我有一个奇怪的情况。
我有一个2D Numpy数组,x:
x = np.random.random_integers(0,5,(20,8))
我有2个索引器-一个索引为行,一个索引为列。为了索引X,我必须执行以下操作:
row_indices = [4,2,18,16,7,19,4] col_indices = [1,2] x_rows = x[row_indices,:] x_indexed = x_rows[:,column_indices]
不仅仅是:
x_new = x[row_indices,column_indices]
(失败:错误,无法通过(2,)广播(20,))
我希望能够使用广播在一行中建立索引,因为这样可以使代码保持干净和可读性…而且,我对幕后的python并不太了解,但是据我了解它,它在一行中应该更快(我将使用相当大的数组)。
测试用例:
x = np.random.random_integers(0,5,(20,8)) row_indices = [4,2,18,16,7,19,4] col_indices = [1,2] x_rows = x[row_indices,:] x_indexed = x_rows[:,col_indices] x_doesnt_work = x[row_indices,col_indices]
np.ix_使用索引或布尔数组/掩码进行选择或分配
np.ix_
1.与 indexing-arrays
indexing-arrays
一个选择
我们可以np.ix_用来获取索引数组的元组,它们可以相互广播以导致索引的高维组合。因此,当该元组用于索引输入数组时,将为我们提供相同的高维数组。因此,要基于两个1D索引数组进行选择,将是-
x_indexed = x[np.ix_(row_indices,col_indices)]
B.作业
我们可以使用相同的符号将标量或可广播数组分配给那些索引位置。因此,以下工作适用于作业-
x[np.ix_(row_indices,col_indices)] = # scalar or broadcastable array
2.用 masks
我们还可以将布尔数组/掩码与一起使用np.ix_,类似于如何使用索引数组。可以再次使用它来选择输入数组中的一个块,也可以对其进行分配。
因此,使用row_mask和col_mask布尔数组分别作为行和列选择的掩码,我们可以使用以下内容进行选择-
x[np.ix_(row_mask,col_mask)]
以下是作业的作品
x[np.ix_(row_mask,col_mask)] = # scalar or broadcastable array
样品运行
np.ix_与indexing-arrays
输入数组和索引数组
In [221]: x Out[221]: array([[17, 39, 88, 14, 73, 58, 17, 78], [88, 92, 46, 67, 44, 81, 17, 67], [31, 70, 47, 90, 52, 15, 24, 22], [19, 59, 98, 19, 52, 95, 88, 65], [85, 76, 56, 72, 43, 79, 53, 37], [74, 46, 95, 27, 81, 97, 93, 69], [49, 46, 12, 83, 15, 63, 20, 79]]) In [222]: row_indices Out[222]: [4, 2, 5, 4, 1] In [223]: col_indices Out[223]: [1, 2]
具有np.ix_- 的索引数组的元组
In [224]: np.ix_(row_indices,col_indices) # Broadcasting of indices Out[224]: (array([[4], [2], [5], [4], [1]]), array([[1, 2]]))
进行选择
In [225]: x[np.ix_(row_indices,col_indices)] Out[225]: array([[76, 56], [70, 47], [46, 95], [76, 56], [92, 46]])
如OP所建议的,这实际上与执行2D数组版本的老式广播相同,该数组的2D数组row_indices将其元素/索引发送到axis=0,从而在处创建单例维度,axis=1从而允许使用进行广播col_indices。因此,我们将有一个类似的替代解决方案-
In [227]: x[np.asarray(row_indices)[:,None],col_indices] Out[227]: array([[76, 56], [70, 47], [46, 95], [76, 56], [92, 46]])
如前所述,对于作业,我们只是这样做。
行,列索引数组
In [36]: row_indices = [1, 4] In [37]: col_indices = [1, 3]
使用标量进行分配
In [38]: x[np.ix_(row_indices,col_indices)] = -1 In [39]: x Out[39]: array([[17, 39, 88, 14, 73, 58, 17, 78], [88, -1, 46, -1, 44, 81, 17, 67], [31, 70, 47, 90, 52, 15, 24, 22], [19, 59, 98, 19, 52, 95, 88, 65], [85, -1, 56, -1, 43, 79, 53, 37], [74, 46, 95, 27, 81, 97, 93, 69], [49, 46, 12, 83, 15, 63, 20, 79]])
使用2D块(可广播数组)进行分配
In [40]: rand_arr = -np.arange(4).reshape(2,2) In [41]: x[np.ix_(row_indices,col_indices)] = rand_arr In [42]: x Out[42]: array([[17, 39, 88, 14, 73, 58, 17, 78], [88, 0, 46, -1, 44, 81, 17, 67], [31, 70, 47, 90, 52, 15, 24, 22], [19, 59, 98, 19, 52, 95, 88, 65], [85, -2, 56, -3, 43, 79, 53, 37], [74, 46, 95, 27, 81, 97, 93, 69], [49, 46, 12, 83, 15, 63, 20, 79]]
masks
输入数组
In [19]: x Out[19]: array([[17, 39, 88, 14, 73, 58, 17, 78], [88, 92, 46, 67, 44, 81, 17, 67], [31, 70, 47, 90, 52, 15, 24, 22], [19, 59, 98, 19, 52, 95, 88, 65], [85, 76, 56, 72, 43, 79, 53, 37], [74, 46, 95, 27, 81, 97, 93, 69], [49, 46, 12, 83, 15, 63, 20, 79]])
输入行,列掩码
In [20]: row_mask = np.array([0,1,1,0,0,1,0],dtype=bool) In [21]: col_mask = np.array([1,0,1,0,1,1,0,0],dtype=bool)
In [22]: x[np.ix_(row_mask,col_mask)] Out[22]: array([[88, 46, 44, 81], [31, 47, 52, 15], [74, 95, 81, 97]])
In [23]: x[np.ix_(row_mask,col_mask)] = -1 In [24]: x Out[24]: array([[17, 39, 88, 14, 73, 58, 17, 78], [-1, 92, -1, 67, -1, -1, 17, 67], [-1, 70, -1, 90, -1, -1, 24, 22], [19, 59, 98, 19, 52, 95, 88, 65], [85, 76, 56, 72, 43, 79, 53, 37], [-1, 46, -1, 27, -1, -1, 93, 69], [49, 46, 12, 83, 15, 63, 20, 79]])
In [25]: rand_arr = -np.arange(12).reshape(3,4) In [26]: x[np.ix_(row_mask,col_mask)] = rand_arr In [27]: x Out[27]: array([[ 17, 39, 88, 14, 73, 58, 17, 78], [ 0, 92, -1, 67, -2, -3, 17, 67], [ -4, 70, -5, 90, -6, -7, 24, 22], [ 19, 59, 98, 19, 52, 95, 88, 65], [ 85, 76, 56, 72, 43, 79, 53, 37], [ -8, 46, -9, 27, -10, -11, 93, 69], [ 49, 46, 12, 83, 15, 63, 20, 79]])