从Python:tf-idf-cosine:查找文档相似度,可以使用tf-idf余弦计算文档相似度。如果不导入外部库,是否有任何方法可以计算2个字符串之间的余弦相似度?
Python:tf-idf-cosine
tf-idf
s1 = "This is a foo bar sentence ." s2 = "This sentence is similar to a foo bar sentence ." s3 = "What is this string ? Totally not related to the other two lines ." cosine_sim(s1, s2) # Should give high cosine similarity cosine_sim(s1, s3) # Shouldn't give high cosine similarity value cosine_sim(s2, s3) # Shouldn't give high cosine similarity value
一个简单的纯Python实现是:
import re, math from collections import Counter WORD = re.compile(r'\w+') def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x]**2 for x in vec1.keys()]) sum2 = sum([vec2[x]**2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) text1 = 'This is a foo bar sentence .' text2 = 'This sentence is similar to a foo bar sentence .' vector1 = text_to_vector(text1) vector2 = text_to_vector(text2) cosine = get_cosine(vector1, vector2) print 'Cosine:', cosine
印刷品:
Cosine: 0.861640436855
这里所用的余弦公式描述这里。
这不包括通过tf-idf对单词进行加权,但是为了使用tf-idf,你需要具有一个相当大的语料库才能从中估计tfidf的权重。
tfidf
你还可以通过使用更复杂的方法从一段文本中提取单词,对其进行词干或词义化等来进一步开发它。