生成器理解是做什么的?它是如何工作的?
生成器表达式就像一个列表推导,但是它没有找到你感兴趣的所有项目并将它们打包到列表中,而是等待,并逐个生成表达式中的每个项目。
>>> my_list = [1, 3, 5, 9, 2, 6] >>> filtered_list = [item for item in my_list if item > 3] >>> print(filtered_list) [5, 9, 6] >>> len(filtered_list) 3 >>> # compare to generator expression ... >>> filtered_gen = (item for item in my_list if item > 3) >>> print(filtered_gen) # notice it's a generator object <generator object <genexpr> at 0x7f2ad75f89e0> >>> len(filtered_gen) # So technically, it has no length Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: object of type 'generator' has no len() >>> # We extract each item out individually. We'll do it manually first. ... >>> next(filtered_gen) 5 >>> next(filtered_gen) 9 >>> next(filtered_gen) 6 >>> next(filtered_gen) # Should be all out of items and give an error Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration >>> # Yup, the generator is spent. No values for you! ... >>> # Let's prove it gives the same results as our list comprehension ... >>> filtered_gen = (item for item in my_list if item > 3) >>> gen_to_list = list(filtered_gen) >>> print(gen_to_list) [5, 9, 6] >>> filtered_list == gen_to_list True >>>
由于生成器表达式一次只需要产生一项,因此可以节省大量内存。在需要一次获取一项,根据该项进行大量计算然后移至下一项的情况下,生成器表达式最有意义。如果需要多个值,则还可以使用生成器表达式,一次获取几个。如果在程序继续执行之前需要所有值,请改用列表推导。