我认为标题的答案通常是去阅读文档,但是我浏览了NLTK书,但没有给出答案。我是Python的新手。
我有很多.txt文件,我希望能够使用NLTK为语料库提供的语料库功能nltk_data。
.txt
nltk_data
我已经尝试过,PlaintextCorpusReader但是我无法超越:
PlaintextCorpusReader
>>>import nltk >>>from nltk.corpus import PlaintextCorpusReader >>>corpus_root = './' >>>newcorpus = PlaintextCorpusReader(corpus_root, '.*') >>>newcorpus.words()
如何newcorpus使用punkt分割句子?我尝试使用punkt函数,但punkt函数无法读取PlaintextCorpusReader类?
newcorpus
punkt
你还可以引导我介绍如何将分段数据写入文本文件吗?
我认为PlaintextCorpusReader,至少在你的输入语言是英语的情况下,已经使用punkt标记器对输入进行了细分。
PlainTextCorpusReader的构造函数
PlainTextCorpusReader
def __init__(self, root, fileids, word_tokenizer=WordPunctTokenizer(), sent_tokenizer=nltk.data.LazyLoader( 'tokenizers/punkt/english.pickle'), para_block_reader=read_blankline_block, encoding='utf8'):
你可以向读者传递一个单词和句子标记器,但是后者的默认值已经是nltk.data.LazyLoader('tokenizers/punkt/english.pickle')。
nltk.data.LazyLoader('tokenizers/punkt/english.pickle')
对于单个字符串,将按以下方式使用标记器(此处说明,有关punkt标记器,请参见第5节)。
>>> import nltk.data >>> text = """ ... Punkt knows that the periods in Mr. Smith and Johann S. Bach ... do not mark sentence boundaries. And sometimes sentences ... can start with non-capitalized words. i is a good variable ... name. ... """ >>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') >>> tokenizer.tokenize(text.strip())
如果你的目录如下所示:
newcorpus/ file1.txt file2.txt ...
只需使用以下代码行,你就可以得到一个语料库:
import os from nltk.corpus.reader.plaintext import PlaintextCorpusReader corpusdir = 'newcorpus/' # Directory of corpus. newcorpus = PlaintextCorpusReader(corpusdir, '.*')
注意:该PlaintextCorpusReader将会使用默认设置,nltk.tokenize.sent_tokenize()并将nltk.tokenize.word_tokenize()你的文本分为句子和单词,并且这些功能是针对英语构建的,可能不适用于所有语言。
nltk.tokenize.sent_tokenize()
nltk.tokenize.word_tokenize()
这是创建测试文本文件的完整代码,以及如何使用NLTK创建语料库以及如何在不同级别访问语料库:
import os from nltk.corpus.reader.plaintext import PlaintextCorpusReader # Let's create a corpus with 2 texts in different textfile. txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus.""" txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is.\n""" corpus = [txt1,txt2] # Make new dir for the corpus. corpusdir = 'newcorpus/' if not os.path.isdir(corpusdir): os.mkdir(corpusdir) # Output the files into the directory. filename = 0 for text in corpus: filename+=1 with open(corpusdir+str(filename)+'.txt','w') as fout: print>>fout, text # Check that our corpus do exist and the files are correct. assert os.path.isdir(corpusdir) for infile, text in zip(sorted(os.listdir(corpusdir)),corpus): assert open(corpusdir+infile,'r').read().strip() == text.strip() # Create a new corpus by specifying the parameters # (1) directory of the new corpus # (2) the fileids of the corpus # NOTE: in this case the fileids are simply the filenames. newcorpus = PlaintextCorpusReader('newcorpus/', '.*') # Access each file in the corpus. for infile in sorted(newcorpus.fileids()): print infile # The fileids of each file. with newcorpus.open(infile) as fin: # Opens the file. print fin.read().strip() # Prints the content of the file print # Access the plaintext; outputs pure string/basestring. print newcorpus.raw().strip() print # Access paragraphs in the corpus. (list of list of list of strings) # NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and # nltk.tokenize.word_tokenize. # # Each element in the outermost list is a paragraph, and # Each paragraph contains sentence(s), and # Each sentence contains token(s) print newcorpus.paras() print # To access pargraphs of a specific fileid. print newcorpus.paras(newcorpus.fileids()[0]) # Access sentences in the corpus. (list of list of strings) # NOTE: That the texts are flattened into sentences that contains tokens. print newcorpus.sents() print # To access sentences of a specific fileid. print newcorpus.sents(newcorpus.fileids()[0]) # Access just tokens/words in the corpus. (list of strings) print newcorpus.words() # To access tokens of a specific fileid. print newcorpus.words(newcorpus.fileids()[0])
最后,要阅读文本目录并创建其他语言的NLTK语料库,你必须首先确保你拥有一个python-callable单词标记化和句子标记化模块,这些模块接受字符串/基字符串输入并产生以下输出:
python-callable
>>> from nltk.tokenize import sent_tokenize, word_tokenize >>> txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus.""" >>> sent_tokenize(txt1) ['This is a foo bar sentence.', 'And this is the first txtfile in the corpus.'] >>> word_tokenize(sent_tokenize(txt1)[0]) ['This', 'is', 'a', 'foo', 'bar', 'sentence', '.']