一尘不染

数据透视表还是大熊猫分组依据?

python

我有一个非常希望直截了当的问题,在最近3个小时中,这一直给我带来很多困难。应该很容易。

这是挑战。

我有一个熊猫数据框:

+--------------------------+
|     Col 'X'    Col 'Y'  |
+--------------------------+
|     class 1      cat 1  |
|     class 2      cat 1  |
|     class 3      cat 2  |
|     class 2      cat 3  |
+--------------------------+

我想要将数据框转换为:

+------------------------------------------+
|                  cat 1    cat 2    cat 3 |
+------------------------------------------+
|     class 1         1        0        0  |
|     class 2         1        0        1  |
|     class 3         0        1        0  |
+------------------------------------------+

值是值计数。有人有见识吗?谢谢!


阅读 167

收藏
2020-12-20

共1个答案

一尘不染

这是重塑数据的几种方法 df

In [27]: df
Out[27]:
     Col X  Col Y
0  class 1  cat 1
1  class 2  cat 1
2  class 3  cat 2
3  class 2  cat 3

1) 使用pd.crosstab()

In [28]: pd.crosstab(df['Col X'], df['Col Y'])
Out[28]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

2) 或者,groupby在over上'Col X','Col Y'使用,然后填充零。unstack``Col Y``NaNs

In [29]: df.groupby(['Col X','Col Y']).size().unstack('Col Y', fill_value=0)
Out[29]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

3) 或者使用pd.pivot_table()index=Col Xcolumns=Col Y

In [30]: pd.pivot_table(df, index=['Col X'], columns=['Col Y'], aggfunc=len, fill_value=0)
Out[30]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0

4) 或者,set_indexunstack

In [492]: df.assign(v=1).set_index(['Col X', 'Col Y'])['v'].unstack(fill_value=0)
Out[492]:
Col Y    cat 1  cat 2  cat 3
Col X
class 1      1      0      0
class 2      1      0      1
class 3      0      1      0
2020-12-20