一尘不染

Numpy Meshgrid 3D

python

Numpy的meshgrid对于将两个向量转换为坐标网格非常有用。将其扩展到三个维度的最简单方法是什么?因此,给定三个向量x,y和z,构造可以用作坐标的3x3D数组(而不是2x2D数组)。


阅读 153

收藏
2020-12-20

共1个答案

一尘不染

这是meshgrid的源代码:

def meshgrid(x,y):
    """
    Return coordinate matrices from two coordinate vectors.

    Parameters
    ----------
    x, y : ndarray
        Two 1-D arrays representing the x and y coordinates of a grid.

    Returns
    -------
    X, Y : ndarray
        For vectors `x`, `y` with lengths ``Nx=len(x)`` and ``Ny=len(y)``,
        return `X`, `Y` where `X` and `Y` are ``(Ny, Nx)`` shaped arrays
        with the elements of `x` and y repeated to fill the matrix along
        the first dimension for `x`, the second for `y`.

    See Also
    --------
    index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
                         using indexing notation.
    index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
                         using indexing notation.

    Examples
    --------
    >>> X, Y = np.meshgrid([1,2,3], [4,5,6,7])
    >>> X
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]])
    >>> Y
    array([[4, 4, 4],
           [5, 5, 5],
           [6, 6, 6],
           [7, 7, 7]])

    `meshgrid` is very useful to evaluate functions on a grid.

    >>> x = np.arange(-5, 5, 0.1)
    >>> y = np.arange(-5, 5, 0.1)
    >>> xx, yy = np.meshgrid(x, y)
    >>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2)

    """
    x = asarray(x)
    y = asarray(y)
    numRows, numCols = len(y), len(x)  # yes, reversed
    x = x.reshape(1,numCols)
    X = x.repeat(numRows, axis=0)

    y = y.reshape(numRows,1)
    Y = y.repeat(numCols, axis=1)
    return X, Y

这很容易理解。我将模式扩展到任意数量的维度,但是此代码绝不是经过优化的(也没有经过彻底的错误检查),但是您可以付钱。希望能帮助到你:

def meshgrid2(*arrs):
    arrs = tuple(reversed(arrs))  #edit
    lens = map(len, arrs)
    dim = len(arrs)

    sz = 1
    for s in lens:
        sz*=s

    ans = []    
    for i, arr in enumerate(arrs):
        slc = [1]*dim
        slc[i] = lens[i]
        arr2 = asarray(arr).reshape(slc)
        for j, sz in enumerate(lens):
            if j!=i:
                arr2 = arr2.repeat(sz, axis=j) 
        ans.append(arr2)

    return tuple(ans)
2020-12-20