一尘不染

ValueError:检查目标时发生错误:预期model_2具有形状(无,252、252、1),但形状为数组(300、128、128、3)

python

嗨,我正在为一类分类构建图像分类器,其中在运行此模型时使用了自动编码器,我在此行得到此错误(autoencoder_model.fit)(ValueError:检查目标时出错:预期model_2具有形状(无,252,252,1)但得到形状为(300,128,128,3)的数组。)

num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')



labels[0:376]=0 
names = ['cats']


input_shape=img_data[0].shape



X_train, X_test = train_test_split(img_data, test_size=0.2, random_state=2)


inputTensor = Input(input_shape)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inputTensor)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded_data = MaxPooling2D((2, 2), padding='same')(x)

encoder_model = Model(inputTensor,encoded_data)

# at this point the representation is (4, 4, 8) i.e. 128-dimensional
encoded_input = Input((4,4,8))
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded_input)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded_data = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder_model = Model(encoded_input,decoded_data)

autoencoder_input = Input(input_shape)
encoded = encoder_model(autoencoder_input)
decoded = decoder_model(encoded)
autoencoder_model = Model(autoencoder_input, decoded)
autoencoder_model.compile(optimizer='adadelta', 
 `enter code here`loss='binary_crossentropy')


autoencoder_model.fit(X_train, X_train,
            epochs=50,
            batch_size=32,
            validation_data=(X_test, X_test),
            callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

阅读 120

收藏
2020-12-20

共1个答案

一尘不染

解码器的输出形状与训练数据的形状之间根本不兼容。(目标表示输出)。

我看到您有2个MaxPoolings(将图像大小除以4)和3个上采样(将解码器的输入乘以8)。

自动编码器的最终输出太大,与您的数据不匹配。您必须简单地在模型中工作,以使输出形状与您的训练数据匹配。

2020-12-20