作为一个简单的示例,请考虑arr以下定义的numpy数组:
arr
import numpy as np arr = np.array([[5, np.nan, np.nan, 7, 2], [3, np.nan, 1, 8, np.nan], [4, 9, 6, np.nan, np.nan]])
其中,arr像这样在控制台输出:
array([[ 5., nan, nan, 7., 2.], [ 3., nan, 1., 8., nan], [ 4., 9., 6., nan, nan]])
我现在想按行“向前填充” nanarray中的值arr。我的意思是用nan左侧最接近的有效值替换每个值。所需的结果如下所示:
nan
array([[ 5., 5., 5., 7., 2.], [ 3., 3., 1., 8., 8.], [ 4., 9., 6., 6., 6.]])
我试过使用for循环:
for row_idx in range(arr.shape[0]): for col_idx in range(arr.shape[1]): if np.isnan(arr[row_idx][col_idx]): arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]
我还尝试过使用熊猫数据框作为中间步骤(因为熊猫数据框具有非常整洁的内置方法用于正向填充):
import pandas as pd df = pd.DataFrame(arr) df.fillna(method='ffill', axis=1, inplace=True) arr = df.as_matrix()
以上两种策略都能产生预期的结果,但是我一直在想:仅使用numpy向量化运算的策略不是最有效的一种吗?
还有另一种更有效的方法来“填充” nannumpy数组中的值吗?(例如,通过使用numpy向量化操作)
到目前为止,我已经尝试安排所有解决方案的时间。这是我的安装脚本:
import numba as nb import numpy as np import pandas as pd def random_array(): choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan] out = np.random.choice(choices, size=(1000, 10)) return out def loops_fill(arr): out = arr.copy() for row_idx in range(out.shape[0]): for col_idx in range(1, out.shape[1]): if np.isnan(out[row_idx, col_idx]): out[row_idx, col_idx] = out[row_idx, col_idx - 1] return out @nb.jit def numba_loops_fill(arr): '''Numba decorator solution provided by shx2.''' out = arr.copy() for row_idx in range(out.shape[0]): for col_idx in range(1, out.shape[1]): if np.isnan(out[row_idx, col_idx]): out[row_idx, col_idx] = out[row_idx, col_idx - 1] return out def pandas_fill(arr): df = pd.DataFrame(arr) df.fillna(method='ffill', axis=1, inplace=True) out = df.as_matrix() return out def numpy_fill(arr): '''Solution provided by Divakar.''' mask = np.isnan(arr) idx = np.where(~mask,np.arange(mask.shape[1]),0) np.maximum.accumulate(idx,axis=1, out=idx) out = arr[np.arange(idx.shape[0])[:,None], idx] return out
接下来是此控制台输入:
%timeit -n 1000 loops_fill(random_array()) %timeit -n 1000 numba_loops_fill(random_array()) %timeit -n 1000 pandas_fill(random_array()) %timeit -n 1000 numpy_fill(random_array())
产生以下控制台输出:
1000 loops, best of 3: 9.64 ms per loop 1000 loops, best of 3: 377 µs per loop 1000 loops, best of 3: 455 µs per loop 1000 loops, best of 3: 351 µs per loop
这是一种方法-
mask = np.isnan(arr) idx = np.where(~mask,np.arange(mask.shape[1]),0) np.maximum.accumulate(idx,axis=1, out=idx) out = arr[np.arange(idx.shape[0])[:,None], idx]
如果您不想创建另一个数组,而只是arr自己填写NaN ,请用以下命令替换最后一个步骤-
arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]
样本输入,输出-
In [179]: arr Out[179]: array([[ 5., nan, nan, 7., 2., 6., 5.], [ 3., nan, 1., 8., nan, 5., nan], [ 4., 9., 6., nan, nan, nan, 7.]]) In [180]: out Out[180]: array([[ 5., 5., 5., 7., 2., 6., 5.], [ 3., 3., 1., 8., 8., 5., 5.], [ 4., 9., 6., 6., 6., 6., 7.]])