一尘不染

在numpy数组中向前填充NaN值的最有效方法

python

示例问题

作为一个简单的示例,请考虑arr以下定义的numpy数组:

import numpy as np
arr = np.array([[5, np.nan, np.nan, 7, 2],
                [3, np.nan, 1, 8, np.nan],
                [4, 9, 6, np.nan, np.nan]])

其中,arr像这样在控制台输出:

array([[  5.,  nan,  nan,   7.,   2.],
       [  3.,  nan,   1.,   8.,  nan],
       [  4.,   9.,   6.,  nan,  nan]])

我现在想按行“向前填充” nanarray中的值arr。我的意思是用nan左侧最接近的有效值替换每个值。所需的结果如下所示:

array([[  5.,   5.,   5.,  7.,  2.],
       [  3.,   3.,   1.,  8.,  8.],
       [  4.,   9.,   6.,  6.,  6.]])

到目前为止尝试过

我试过使用for循环:

for row_idx in range(arr.shape[0]):
    for col_idx in range(arr.shape[1]):
        if np.isnan(arr[row_idx][col_idx]):
            arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]

我还尝试过使用熊猫数据框作为中间步骤(因为熊猫数据框具有非常整洁的内置方法用于正向填充):

import pandas as pd
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
arr = df.as_matrix()

以上两种策略都能产生预期的结果,但是我一直在想:仅使用numpy向量化运算的策略不是最有效的一种吗?


概要

还有另一种更有效的方法来“填充” nannumpy数组中的值吗?(例如,通过使用numpy向量化操作)


更新:解决方案比较

到目前为止,我已经尝试安排所有解决方案的时间。这是我的安装脚本:

import numba as nb
import numpy as np
import pandas as pd

def random_array():
    choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan]
    out = np.random.choice(choices, size=(1000, 10))
    return out

def loops_fill(arr):
    out = arr.copy()
    for row_idx in range(out.shape[0]):
        for col_idx in range(1, out.shape[1]):
            if np.isnan(out[row_idx, col_idx]):
                out[row_idx, col_idx] = out[row_idx, col_idx - 1]
    return out

@nb.jit
def numba_loops_fill(arr):
    '''Numba decorator solution provided by shx2.'''
    out = arr.copy()
    for row_idx in range(out.shape[0]):
        for col_idx in range(1, out.shape[1]):
            if np.isnan(out[row_idx, col_idx]):
                out[row_idx, col_idx] = out[row_idx, col_idx - 1]
    return out

def pandas_fill(arr):
    df = pd.DataFrame(arr)
    df.fillna(method='ffill', axis=1, inplace=True)
    out = df.as_matrix()
    return out

def numpy_fill(arr):
    '''Solution provided by Divakar.'''
    mask = np.isnan(arr)
    idx = np.where(~mask,np.arange(mask.shape[1]),0)
    np.maximum.accumulate(idx,axis=1, out=idx)
    out = arr[np.arange(idx.shape[0])[:,None], idx]
    return out

接下来是此控制台输入:

%timeit -n 1000 loops_fill(random_array())
%timeit -n 1000 numba_loops_fill(random_array())
%timeit -n 1000 pandas_fill(random_array())
%timeit -n 1000 numpy_fill(random_array())

产生以下控制台输出:

1000 loops, best of 3: 9.64 ms per loop
1000 loops, best of 3: 377 µs per loop
1000 loops, best of 3: 455 µs per loop
1000 loops, best of 3: 351 µs per loop

阅读 476

收藏
2020-12-20

共1个答案

一尘不染

这是一种方法-

mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]

如果您不想创建另一个数组,而只是arr自己填写NaN ,请用以下命令替换最后一个步骤-

arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]

样本输入,输出-

In [179]: arr
Out[179]: 
array([[  5.,  nan,  nan,   7.,   2.,   6.,   5.],
       [  3.,  nan,   1.,   8.,  nan,   5.,  nan],
       [  4.,   9.,   6.,  nan,  nan,  nan,   7.]])

In [180]: out
Out[180]: 
array([[ 5.,  5.,  5.,  7.,  2.,  6.,  5.],
       [ 3.,  3.,  1.,  8.,  8.,  5.,  5.],
       [ 4.,  9.,  6.,  6.,  6.,  6.,  7.]])
2020-12-20