一尘不染

将具有恒定值的列添加到pandas数据框

python

给定一个DataFrame:

np.random.seed(0)
df = pd.DataFrame(np.random.randn(3, 3), columns=list('ABC'), index=[1, 2, 3])
df

          A         B         C
1  1.764052  0.400157  0.978738
2  2.240893  1.867558 -0.977278
3  0.950088 -0.151357 -0.103219

添加包含常量值(例如0)的新列的最简单方法是什么?

          A         B         C  new
1  1.764052  0.400157  0.978738    0
2  2.240893  1.867558 -0.977278    0
3  0.950088 -0.151357 -0.103219    0

这是我的解决方案,但我不知道为什么这会将NaN放入“新”列?

df['new'] = pd.Series([0 for x in range(len(df.index))])

          A         B         C  new
1  1.764052  0.400157  0.978738  0.0
2  2.240893  1.867558 -0.977278  0.0
3  0.950088 -0.151357 -0.103219  NaN

阅读 134

收藏
2020-12-20

共1个答案

一尘不染

之所以将其NaN放入一列中,是因为df.indexIndex您右侧对象的有所不同。@zach显示了分配新的零列的正确方法。通常,pandas尝试使索引尽可能地对齐。一个缺点是,当指数不对准你NaN,无论他们
是不是
一致。尝试使用reindexalign方法来获得一些直觉,以便对齐具有部分,完全和未对齐所有对齐索引的对象。例如,以下是DataFrame.align()部分对齐索引的工作方式:

In [7]: from pandas import DataFrame

In [8]: from numpy.random import randint

In [9]: df = DataFrame({'a': randint(3, size=10)})

In [10]:

In [10]: df
Out[10]:
   a
0  0
1  2
2  0
3  1
4  0
5  0
6  0
7  0
8  0
9  0

In [11]: s = df.a[:5]

In [12]: dfa, sa = df.align(s, axis=0)

In [13]: dfa
Out[13]:
   a
0  0
1  2
2  0
3  1
4  0
5  0
6  0
7  0
8  0
9  0

In [14]: sa
Out[14]:
0     0
1     2
2     0
3     1
4     0
5   NaN
6   NaN
7   NaN
8   NaN
9   NaN
Name: a, dtype: float64
2020-12-20