我有以下数据集。 https://drive.google.com/drive/folders/1NRelNsXQJ7MTNKcm-T69N6r5ZsOyFmTS?usp=sharing
如果列名称与工作表名称相同,则将所有内容合并在一起作为单独的列,以下是代码
import pandas as pd import glob import os #file directory that contains the csv files files = glob.glob('/Users/user/Desktop/demo/*.csv') dfs = [pd.read_csv(fp).assign(SheetName=os.path.basename(fp).split('.')[0]) for fp in files] data = pd.concat(dfs, ignore_index=True) data.columns = data.columns.str.lower() data=data.rename(columns={'sheetname':'Source'}) merged_data = data
运行以上代码后的数据
merged_data
id user product price[78] price[79] Source 105 dummya egg 22 28.0 sheet1 119 dummy1 soya 67 NaN sheet1 567 dummya spinach 22 28.0 sheet2 897 dummy1 rose 67 99.0 sheet2 345 dummya egg 87 98.0 sheet3 121 dummy1 potato 98 99.0 sheet3
如何合并条件文件? 健康)状况。
Sheet ID price1_col1 price1_col2 price1 price2_col1 price2_col2 price2 sheetname sheet1 yes 78 price1_col1 78 price2_col1 yes sheet2 yes 78 79 price1_col1+ 78 79 price2_col1+ yes price1_col2 price2_col2 sheet3 yes 78 79 max(price1_col1, 79 78 min(price2_col1,price2_col2) no price1_col2)
以上代码段中的价格1指向带有名称为int 78的列名的sheet1。如果78 + 79表示将这些列加起来并命名为price1。
输出
id product price1 price2 sheetname 105 egg 22 28 sheet1 119 soya 67 sheet1 567 spinach 50 28 sheet2 897 rose 166 99 sheet2 345 egg 98 87 121 potato 99 98
采用:
print (merged_data) id user product price[78] price[79] Source 0 105 dummya egg 22 28.0 sheet1 1 119 dummy1 soya 67 NaN sheet1 2 567 dummya spinach 22 28.0 sheet2 3 897 dummy1 rose 67 99.0 sheet2 4 345 dummya egg 87 98.0 sheet3 5 121 dummy1 potato 98 99.0 sheet3 print (Condition) Sheet ID price1_col1 price1_col2 price1_out \ 0 sheet1 yes 78 NaN price1_col1 1 sheet2 yes 78 79.0 price1_col1+price1_col2 2 sheet3 yes 78 79.0 max(price1_col1,price1_col2) price2_col1 price2_col2 price2_out sheetname 0 78 NaN price2_col1 yes 1 78 79.0 price2_col1+price2_col2 yes 2 79 78.0 min(price2_col1,price2_col2) no
#merge data together by left join df = merged_data.merge(Condition.rename(columns={'Sheet':'Source'}), on='Source', how='left') #replace columns to empty strings, remove sheetname and ID columns df['Source'] = np.where(df.pop('sheetname') == 'yes', df['Source'], '') df['id'] = np.where(df.pop('ID') == 'yes', df['id'], '') #filter integers between [] to ned DataFrame df1 = df.filter(regex='\[\d+\]').copy() #filter all columns with price, exclude df1 df2 = df[df.filter(regex='price').columns.difference(df1.columns)].copy() #convert column to integers df1.columns = df1.columns.str.extract('\[(\d+)\]', expand=False).astype(int) #helper column for match missing values df1['a'] = np.nan #filter columns without/with _out mask = df2.columns.str.endswith(('_col1','_col2')) final_cols = df2.columns[ ~mask] removed_cols = df2.columns[mask] #replace columns by match values from df2 for c in removed_cols: df2[c] = df1.lookup(df1.index, df2[c].fillna('a'))
print (df2) price1_col1 price1_col2 price1_out price2_col1 \ 0 22 NaN price1_col1 22.0 1 67 NaN price1_col1 67.0 2 22 28.0 price1_col1+price1_col2 22.0 3 67 99.0 price1_col1+price1_col2 67.0 4 87 98.0 max(price1_col1,price1_col2) 98.0 5 98 99.0 max(price1_col1,price1_col2) 99.0 price2_col2 price2_out 0 NaN price2_col1 1 NaN price2_col1 2 28.0 price2_col1+price2_col2 3 99.0 price2_col1+price2_col2 4 87.0 min(price2_col1,price2_col2) 5 98.0 min(price2_col1,price2_col2)
#create MultiIndex for separate eah price groups df2.columns = df2.columns.str.split('_', expand=True) def f(x): #remove first level x.columns = x.columns.droplevel(0) out = [] #loop each row for v in x.itertuples(index=False): #remove prefix t = v.out.replace(x.name+'_', '') #loop each namedtuple and replace values for k1, v1 in v._asdict().items(): t = t.replace(k1, str(v1)) #pd.eval cannot working with min, max, so handled different if t.startswith('min'): out.append(min(pd.eval(t[3:]))) elif t.startswith('max'): out.append(max(pd.eval(t[3:]))) #handled +-*/ else: out.append(pd.eval(t)) #return back return pd.Series(out) #overwrite original columns df[final_cols] = df2.groupby(level=0, axis=1).apply(f).add_suffix('_out') #if necessary remove helpers df = df.drop(removed_cols, axis=1)
print (df) id user product price[78] price[79] Source price1_out price2_out 0 105 dummya egg 22 28.0 sheet1 22.0 22.0 1 119 dummy1 soya 67 NaN sheet1 67.0 67.0 2 567 dummya spinach 22 28.0 sheet2 50.0 50.0 3 897 dummy1 rose 67 99.0 sheet2 166.0 166.0 4 345 dummya egg 87 98.0 98.0 87.0 5 121 dummy1 potato 98 99.0 99.0 98.0