一尘不染

正确处理相机旋转的方法

python

让我们开始考虑两种类型的相机旋转:

摄像机绕点旋转(轨道):

def rotate_around_target(self, target, delta):
    right = (self.target - self.eye).cross(self.up).normalize()
    amount = (right * delta.y + self.up * delta.x)
    self.target = target
    self.up = self.original_up
    self.eye = (
        mat4.rotatez(amount.z) *
        mat4.rotatey(amount.y) *
        mat4.rotatex(amount.x) *
        vec3(self.eye)
    )

相机旋转目标(FPS)

def rotate_target(self, delta):
    right = (self.target - self.eye).cross(self.up).normalize()
    self.target = (
        mat4.translate(self.eye) *
        mat4().rotate(delta.y, right) *
        mat4().rotate(delta.x, self.up) *
        mat4.translate(-self.eye) *
        self.target
    )

然后是一个更新函数,其中从眼睛/目标/上摄像机矢量中计算出投影/视图矩阵:

def update(self, aspect):
    self.view = mat4.lookat(self.eye, self.target, self.up)
    self.projection = mat4.perspective_fovx(
        self.fov, aspect, self.near, self.far
    )

当摄像机的视图方向与上轴平行(在此处为z-up)时,出现这些旋转功能的问题…在那时,摄像机的行为确实令人讨厌,因此我将遇到以下故障:

展示柜

所以我的问题是,我该如何调整以上代码,使相机完整旋转,而最终结果在某些边缘点上看起来并不奇怪(相机轴围绕:/翻转)?

我希望具有与许多DCC程序包(3dsmax,maya等)相同的行为,在这些程序包中它们进行完整的旋转而不会出现任何奇怪的行为。

编辑:

对于那些想尝试一下数学的人,我决定创建一个非常简单的版本,该版本能够重现所解释的问题:

import math
from ctypes import c_void_p

import numpy as np
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *

import glm


class Camera():

    def __init__(
        self,
        eye=None, target=None, up=None,
        fov=None, near=0.1, far=100000
    ):
        self.eye = eye or glm.vec3(0, 0, 1)
        self.target = target or glm.vec3(0, 0, 0)
        self.up = up or glm.vec3(0, 1, 0)
        self.original_up = glm.vec3(self.up)
        self.fov = fov or glm.radians(45)
        self.near = near
        self.far = far

    def update(self, aspect):
        self.view = glm.lookAt(
            self.eye, self.target, self.up
        )
        self.projection = glm.perspective(
            self.fov, aspect, self.near, self.far
        )

    def rotate_target(self, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        M = glm.mat4(1)
        M = glm.translate(M, self.eye)
        M = glm.rotate(M, delta.y, right)
        M = glm.rotate(M, delta.x, self.up)
        M = glm.translate(M, -self.eye)
        self.target = glm.vec3(M * glm.vec4(self.target, 1.0))

    def rotate_around_target(self, target, delta):
        right = glm.normalize(glm.cross(self.target - self.eye, self.up))
        amount = (right * delta.y + self.up * delta.x)
        M = glm.mat4(1)
        M = glm.rotate(M, amount.z, glm.vec3(0, 0, 1))
        M = glm.rotate(M, amount.y, glm.vec3(0, 1, 0))
        M = glm.rotate(M, amount.x, glm.vec3(1, 0, 0))
        self.eye = glm.vec3(M * glm.vec4(self.eye, 1.0))
        self.target = target
        self.up = self.original_up

    def rotate_around_origin(self, delta):
        return self.rotate_around_target(glm.vec3(0), delta)


class GlutController():

    FPS = 0
    ORBIT = 1

    def __init__(self, camera, velocity=100, velocity_wheel=100):
        self.velocity = velocity
        self.velocity_wheel = velocity_wheel
        self.camera = camera

    def glut_mouse(self, button, state, x, y):
        self.mouse_last_pos = glm.vec2(x, y)
        self.mouse_down_pos = glm.vec2(x, y)

        if button == GLUT_LEFT_BUTTON:
            self.mode = self.FPS
        elif button == GLUT_RIGHT_BUTTON:
            self.mode = self.ORBIT

    def glut_motion(self, x, y):
        pos = glm.vec2(x, y)
        move = self.mouse_last_pos - pos
        self.mouse_last_pos = pos

        if self.mode == self.FPS:
            self.camera.rotate_target(move * 0.005)
        elif self.mode == self.ORBIT:
            self.camera.rotate_around_origin(move * 0.005)


class MyWindow:

    def __init__(self, w, h):
        self.width = w
        self.height = h

        glutInit()
        glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
        glutInitWindowSize(w, h)
        glutCreateWindow('OpenGL Window')

        self.startup()

        glutReshapeFunc(self.reshape)
        glutDisplayFunc(self.display)
        glutMouseFunc(self.controller.glut_mouse)
        glutMotionFunc(self.controller.glut_motion)
        glutIdleFunc(self.idle_func)

    def startup(self):
        glEnable(GL_DEPTH_TEST)

        aspect = self.width / self.height
        self.camera = Camera(
            eye=glm.vec3(10, 10, 10),
            target=glm.vec3(0, 0, 0),
            up=glm.vec3(0, 1, 0)
        )
        self.model = glm.mat4(1)
        self.controller = GlutController(self.camera)

    def run(self):
        glutMainLoop()

    def idle_func(self):
        glutPostRedisplay()

    def reshape(self, w, h):
        glViewport(0, 0, w, h)
        self.width = w
        self.height = h

    def display(self):
        self.camera.update(self.width / self.height)

        glClearColor(0.2, 0.3, 0.3, 1.0)
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        gluPerspective(glm.degrees(self.camera.fov), self.width / self.height, self.camera.near, self.camera.far)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()
        e = self.camera.eye
        t = self.camera.target
        u = self.camera.up
        gluLookAt(e.x, e.y, e.z, t.x, t.y, t.z, u.x, u.y, u.z)
        glColor3f(1, 1, 1)
        glBegin(GL_LINES)
        for i in range(-5, 6):
            if i == 0:
                continue
            glVertex3f(-5, 0, i)
            glVertex3f(5, 0, i)
            glVertex3f(i, 0, -5)
            glVertex3f(i, 0, 5)
        glEnd()

        glBegin(GL_LINES)
        glColor3f(1, 0, 0)
        glVertex3f(-5, 0, 0)
        glVertex3f(5, 0, 0)
        glColor3f(0, 1, 0)
        glVertex3f(0, -5, 0)
        glVertex3f(0, 5, 0)
        glColor3f(0, 0, 1)
        glVertex3f(0, 0, -5)
        glVertex3f(0, 0, 5)
        glEnd()

        glutSwapBuffers()


if __name__ == '__main__':
    window = MyWindow(800, 600)
    window.run()

为了运行它,您需要安装pyopenglpyglm


阅读 610

收藏
2021-01-20

共1个答案

一尘不染

我建议围绕视图空间中的轴进行旋转

您必须知道视图矩阵(V)。由于视图矩阵被编码在self.eyeself.target并且self.up,它必须由计算lookAt

V = glm.lookAt(self.eye, self.target, self.up)

计算pivot视图空间,旋转角度和旋转轴。在这种情况下,轴是向右旋转的方向,其中y轴必须翻转:

pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
axis  = glm.vec3(-delta.y, -delta.x, 0)
angle = glm.length(delta)

设置旋转矩阵R并计算围绕枢轴的比率矩阵RP。最后V通过旋转矩阵变换视图矩阵()。结果是新的视图矩阵NV

R  = glm.rotate( glm.mat4(1), angle, axis )
RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
NV = RP * V

解码self.eyeself.target然后self.up从新的视图矩阵中进行解码NV

C = glm.inverse(NV)
targetDist  = glm.length(self.target - self.eye)
self.eye    = glm.vec3(C[3])
self.target = self.eye - glm.vec3(C[2]) * targetDist 
self.up     = glm.vec3(C[1])

该方法的完整编码 rotate_around_target_view

def rotate_around_target_view(self, target, delta):

    V = glm.lookAt(self.eye, self.target, self.up)

    pivot = glm.vec3(V * glm.vec4(target.x, target.y, target.z, 1))
    axis  = glm.vec3(-delta.y, -delta.x, 0)
    angle = glm.length(delta)

    R  = glm.rotate( glm.mat4(1), angle, axis )
    RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
    NV = RP * V

    C = glm.inverse(NV)
    targetDist  = glm.length(self.target - self.eye)
    self.eye    = glm.vec3(C[3])
    self.target = self.eye - glm.vec3(C[2]) * targetDist 
    self.up     = glm.vec3(C[1])

最终,它可以绕世界原点和眼睛位置甚至任何其他点旋转。

def rotate_around_origin(self, delta):
    return self.rotate_around_target_view(glm.vec3(0), delta)

def rotate_target(self, delta):
    return self.rotate_around_target_view(self.eye, delta)

或者,可以在模型的世界空间中执行旋转。解决方案非常相似。旋转是在世界空间中完成的,因此不必将轴转换为视图空间,并且将旋转应用于视图矩阵(NV = V * RP)之前:

def rotate_around_target_world(self, target, delta):

    V = glm.lookAt(self.eye, self.target, self.up)

    pivot = target
    axis  = glm.vec3(-delta.y, -delta.x, 0)
    angle = glm.length(delta)

    R  = glm.rotate( glm.mat4(1), angle, axis )
    RP = glm.translate(glm.mat4(1), pivot) * R * glm.translate(glm.mat4(1), -pivot)
    NV = V * RP

    C = glm.inverse(NV)
    targetDist  = glm.length(self.target - self.eye)
    self.eye    = glm.vec3(C[3])
    self.target = self.eye - glm.vec3(C[2]) * targetDist 
    self.up     = glm.vec3(C[1])

def rotate_around_origin(self, delta):
    return self.rotate_around_target_world(glm.vec3(0), delta)


当然,两种解决方案都可以结合使用。通过垂直(上下)拖动,视图可以在其水平轴上旋转。通过水平拖动(左右),模型(世界)可以绕其(上)轴旋转:

def rotate_around_target(self, target, delta):
    if abs(delta.x) > 0:
        self.rotate_around_target_world(target, glm.vec3(delta.x, 0.0, 0.0))
    if abs(delta.y) > 0:    
        self.rotate_around_target_view(target, glm.vec3(0.0, delta.y, 0.0))

考虑到问题的原始代码,为了实现最小程度的侵入性方法,我将提出以下建议:

  • 操作之后,视图的目标应该是target函数的输入参数rotate_around_target

  • 鼠标水平移动应使视图围绕世界的向上矢量旋转

  • 垂直鼠标移动应使视图围绕当前水平轴倾斜

我想出了以下方法:

  1. 计算当前视线(los),向上矢量(up)和水平轴(right

  2. 通过将向上矢量投影到由原始向上矢量和当前视线给定的平面上,将向上矢量垂直放置。这是通过Gram–Schmidt正交化得到的

  3. 绕当前水平轴倾斜。这意味着losupright轴旋转。

  4. 围绕上向量旋转。losright旋转up

  5. 计算设置向上并计算眼睛和目标位置,其中目标由输入参数target设置:

    def rotate_around_target(self, target, delta):

    # get directions
    los    = self.target - self.eye
    losLen = glm.length(los)
    right  = glm.normalize(glm.cross(los, self.up))
    up     = glm.cross(right, los)
    
    # upright up vector (Gram–Schmidt orthogonalization)
    fix_right = glm.normalize(glm.cross(los, self.original_up))
    UPdotX    = glm.dot(fix_right, up)
    up        = glm.normalize(up - UPdotX * fix_right)
    right     = glm.normalize(glm.cross(los, up))
    los       = glm.cross(up, right)
    
    # tilt around horizontal axis
    RHor = glm.rotate(glm.mat4(1), delta.y, right)
    up   = glm.vec3(RHor * glm.vec4(up, 0.0))
    los  = glm.vec3(RHor * glm.vec4(los, 0.0))
    
    # rotate around up vector
    RUp   = glm.rotate(glm.mat4(1), delta.x, up)
    right = glm.vec3(RUp * glm.vec4(right, 0.0))
    los   = glm.vec3(RUp * glm.vec4(los, 0.0))
    
    # set eye, target and up
    self.eye    = target - los * losLen 
    self.target = target
    self.up     = up
    
2021-01-20