一尘不染

通过从pandas数据框中检查来替换单词

python

我有一个数据框如下。

ID  Word       Synonyms
------------------------
1   drove      drive
2   office     downtown
3   everyday   daily
4   day        daily
5   work       downtown

我正在阅读一个句子,并想用上面定义的同义词替换该句子中的单词。这是我的代码:

import nltk
import pandas as pd
import string

sdf = pd.read_excel('C:\synonyms.xlsx')
sd = sdf.apply(lambda x: x.astype(str).str.lower())
words = 'i drove to office everyday in my car'

#######

def tokenize(text):
    text = ''.join([ch for ch in text if ch not in string.punctuation])
    tokens = nltk.word_tokenize(text)
    synonym = synonyms(tokens)
    return synonym

def synonyms(words):
    for word in words:
        if(sd[sd['Word'] == word].index.tolist()):
            idx = sd[sd['Word'] == word].index.tolist()
            word = sd.loc[idx]['Synonyms'].item()
        else:
            word
    return word

print(tokenize(words))

上面的代码将输入句子标记化。我想实现以下输出:

i drove to office everyday in my car
i drive to downtown daily in my car

但是我得到的输出是

car

如果我跳过该synonyms函数,那么我的输出将没有问题,并且将分成单个单词。我试图了解我在synonyms函数中做错了什么。另外,请告知是否有更好的解决方案。


阅读 178

收藏
2021-01-20

共1个答案

一尘不染

我会利用Pandas / NumPy索引。由于您的同义词映射是多对一的,因此您可以使用该Word列重新编制索引。

sd = sd.applymap(str.strip).applymap(str.lower).set_index('Word').Synonyms
print(sd)



Word
drove          drive
office      downtown
everyday       daily
day            daily
Name: Synonyms, dtype: object

然后,您可以轻松地将标记列表与其各自的同义词对齐。

words = nltk.word_tokenize(u'i drove to office everyday in my car')
sentence = sd[words].reset_index()
print(sentence)



       Word  Synonyms
0         i       NaN
1     drove     drive
2        to       NaN
3    office  downtown
4  everyday     daily
5        in       NaN
6        my       NaN
7       car       NaN

现在,仍然可以使用的令牌Synonyms,回溯到Word。这可以通过以下方式实现

sentence = sentence.Synonyms.fillna(sentence.Word)
print(sentence.values)



[u'i' 'drive' u'to' 'downtown' 'daily' u'in' u'my' u'car']
2021-01-20