我想用StandardScaler(from pyspark.mllib.feature import StandardScaler)缩放数据,现在我可以通过将RDD的值传递给transform函数来做到这一点,但是问题是我想保留键。无论如何,我是否通过保留数据密钥来扩展数据?
StandardScaler
from pyspark.mllib.feature import StandardScaler
样本数据集
0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal. 0,tcp,http,SF,239,486,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,19,19,1.00,0.00,0.05,0.00,0.00,0.00,0.00,0.00,normal. 0,tcp,http,SF,235,1337,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,29,29,1.00,0.00,0.03,0.00,0.00,0.00,0.00,0.00,smurf.
进口货
import sys import os from collections import OrderedDict from numpy import array from math import sqrt try: from pyspark import SparkContext, SparkConf from pyspark.mllib.clustering import KMeans from pyspark.mllib.feature import StandardScaler from pyspark.statcounter import StatCounter print ("Successfully imported Spark Modules") except ImportError as e: print ("Can not import Spark Modules", e) sys.exit(1)
代码部分
sc = SparkContext(conf=conf) raw_data = sc.textFile(data_file) parsed_data = raw_data.map(Parseline)
Parseline 功能:
Parseline
def Parseline(line): line_split = line.split(",") clean_line_split = [line_split[0]]+line_split[4:-1] return (line_split[-1], array([float(x) for x in clean_line_split]))
这不是一个很好的解决方案,但是您可以调整我对类似Scala问题的答案。让我们从一个示例数据开始:
import numpy as np np.random.seed(323) keys = ["foo"] * 50 + ["bar"] * 50 values = ( np.vstack([np.repeat(-10, 500), np.repeat(10, 500)]).reshape(100, -1) + np.random.rand(100, 10) ) rdd = sc.parallelize(zip(keys, values))
不幸的MultivariateStatisticalSummary是,它只是围绕JVM模型的包装,并且它并不是真正的Python友好。幸运的是,有了NumPy数组,我们可以使用standardStatCounter通过键来计算统计信息:
MultivariateStatisticalSummary
StatCounter
from pyspark.statcounter import StatCounter def compute_stats(rdd): return rdd.aggregateByKey( StatCounter(), StatCounter.merge, StatCounter.mergeStats ).collectAsMap()
最后我们可以map归一化:
map
def scale(rdd, stats): def scale_(kv): k, v = kv return (v - stats[k].mean()) / stats[k].stdev() return rdd.map(scale_) scaled = scale(rdd, compute_stats(rdd)) scaled.first() ## array([ 1.59879188, -1.66816084, 1.38546532, 1.76122047, 1.48132643, ## 0.01512487, 1.49336769, 0.47765982, -1.04271866, 1.55288814])