一尘不染

快速组合,无需替换数组-NumPy / Python

python

我从一维数组生成有效的成对组合之后。如果n> 1000,Itertools效率太低

E.g. [1, 2, 3, 4]

magic code...

Out[2]:
array([[1, 2],
       [1, 3],
       [1, 4],
       [2, 3],
       [2, 4],
       [3, 4]])

最近的事情在这里


阅读 226

收藏
2021-01-20

共1个答案

一尘不染

I.成对组合

一种方法是numba获取内存,从而提高性能-

from numba import njit

@njit
def pairwise_combs_numba(a):
    n = len(a)
    L = n*(n-1)//2
    out = np.empty((L,2),dtype=a.dtype)
    iterID = 0
    for i in range(n):
        for j in range(i+1,n):
            out[iterID,0] = a[i]
            out[iterID,1] = a[j]
            iterID += 1
    return out

另一个基于NumPy的np.broadcast_to控件将用于获取网格视图,然后进行遮罩-

def pairwise_combs_mask(a):
    n = len(a)
    L = n*(n-1)//2
    out = np.empty((L,2),dtype=a.dtype)
    m = ~np.tri(len(a),dtype=bool)
    out[:,0] = np.broadcast_to(a[:,None],(n,n))[m]
    out[:,1] = np.broadcast_to(a,(n,n))[m]
    return out

二。三联体组合

我们将扩展相同的方法,以使自己成为三元组合-

@njit
def triplet_combs_numba(a):
    n = len(a)
    L = n*(n-1)*(n-2)//6
    out = np.empty((L,3),dtype=a.dtype)
    iterID = 0
    for i in range(n):
        for j in range(i+1,n):
            for k in range(j+1,n):
                out[iterID,0] = a[i]
                out[iterID,1] = a[j]
                out[iterID,2] = a[k]
                iterID += 1
    return out

def triplet_combs_mask(a):
    n = len(a)
    L = n*(n-1)*(n-2)//6
    out = np.empty((L,3),dtype=a.dtype)
    r = np.arange(n)
    m = (r[:,None,None]<r[:,None]) & (r[:,None]<r)
    out[:,0] = np.broadcast_to(a[:,None,None],(n,n,n))[m]
    out[:,1] = np.broadcast_to(a[None,:,None],(n,n,n))[m]
    out[:,2] = np.broadcast_to(a[None,None,:],(n,n,n))[m]
    return out

高阶组合将同样扩展。

样品运行-

In [54]: a = np.array([3,9,4,1,7])

In [55]: pairwise_combs_numba(a)
Out[55]: 
array([[3, 9],
       [3, 4],
       [3, 1],
       [3, 7],
       [9, 4],
       [9, 1],
       [9, 7],
       [4, 1],
       [4, 7],
       [1, 7]])

In [56]: triplet_combs_numba(a)
Out[56]: 
array([[3, 9, 4],
       [3, 9, 1],
       [3, 9, 7],
       [3, 4, 1],
       [3, 4, 7],
       [3, 1, 7],
       [9, 4, 1],
       [9, 4, 7],
       [9, 1, 7],
       [4, 1, 7]])

时间(包括Python的内置-
itertools.combinations)-

In [68]: a = np.random.rand(4000)

In [69]: %timeit pairwise_combs_numba(a)
    ...: %timeit pairwise_combs_mask(a)
    ...: %timeit list(itertools.combinations(a, 2))
10 loops, best of 3: 52.2 ms per loop
10 loops, best of 3: 146 ms per loop
1 loop, best of 3: 597 ms per loop

In [70]: a = np.random.rand(400)

In [71]: %timeit triplet_combs_numba(a)
    ...: %timeit triplet_combs_mask(a)
    ...: %timeit list(itertools.combinations(a, 3))
10 loops, best of 3: 98.5 ms per loop
1 loop, best of 3: 352 ms per loop
1 loop, best of 3: 795 ms per loop
2021-01-20