一尘不染

Pandas频率表中的描述性统计

python

我有一个测试成绩的频率表:

score    count
-----    -----
  77      1105
  78       940
  79      1222
  80      4339
etc

我想显示基本统计数据和箱图,该图由频率表汇总。(例如,上面示例的平均值为79.16,中位数为80。)

熊猫有办法做到这一点吗?我所看到的所有示例均假设有个别案例的表格。

我想我可以生成一个个人分数列表,像这样-

In [2]: s = pd.Series([77] * 1105 + [78] * 940 + [79] * 1222 + [80] * 4339)
In [3]: s.describe()
Out[3]: 
count    7606.000000
mean       79.156324
std         1.118439
min        77.000000
25%        78.000000
50%        80.000000
75%        80.000000
max        80.000000
dtype: float64

-但我希望避免这种情况;真实的非玩具数据集中的总频率高达十亿。

任何帮助表示赞赏。


阅读 324

收藏
2021-01-20

共1个答案

一尘不染

这是一个用于计算频率分布的描述统计量的小函数:

# from __future__ import division (for Python 2)
def descriptives_from_agg(values, freqs):
    values = np.array(values)
    freqs = np.array(freqs)
    arg_sorted = np.argsort(values)
    values = values[arg_sorted]
    freqs = freqs[arg_sorted]
    count = freqs.sum()
    fx = values * freqs
    mean = fx.sum() / count
    variance = ((freqs * values**2).sum() / count) - mean**2
    variance = count / (count - 1) * variance  # dof correction for sample variance
    std = np.sqrt(variance)
    minimum = np.min(values)
    maximum = np.max(values)
    cumcount = np.cumsum(freqs)
    Q1 = values[np.searchsorted(cumcount, 0.25*count)]
    Q2 = values[np.searchsorted(cumcount, 0.50*count)]
    Q3 = values[np.searchsorted(cumcount, 0.75*count)]
    idx = ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']
    result = pd.Series([count, mean, std, minimum, Q1, Q2, Q3, maximum], index=idx)
    return result

演示:

np.random.seed(0)

val = np.random.normal(100, 5, 1000).astype(int)

pd.Series(val).describe()
Out: 
count    1000.000000
mean       99.274000
std         4.945845
min        84.000000
25%        96.000000
50%        99.000000
75%       103.000000
max       113.000000
dtype: float64

vc = pd.value_counts(val)
descriptives_from_agg(vc.index, vc.values)

Out: 
count    1000.000000
mean       99.274000
std         4.945845
min        84.000000
25%        96.000000
50%        99.000000
75%       103.000000
max       113.000000
dtype: float64

请注意,这不能处理NaN,并且未经适当测试。

2021-01-20