一尘不染

如何在此matplotlib图中固定条形宽度

python

有人可以告诉我如何修改此使用matplotlib的Python代码,以便无论绘制多少分,条的宽度都将保持恒定吗?先感谢您!

# data to plot
  n_groups = len(math_scores)
  ###print "im here", math_scores,verbal_scores
  scores_readingwriting = verbal_scores
  scores_math = math_scores

# create plot
  fig, ax = plot.subplots()
  index = np.arange(n_groups)
  bar_width = 0.35
  opacity = 0.8

  rects1 = plot.bar(index, scores_readingwriting, bar_width,
                 alpha=opacity,
                 color='black',
                 label='R/W')

  rects2 = plot.bar(index + bar_width, scores_math, bar_width,
                 alpha=opacity,
                 color='grey',
                 label='Math')

  plot.xlabel('Date',size='14')
  plot.ylabel('Scores',size='14')

  plot.title(str(first_names[i])+' '+str(last_names[i])+"'s History",size='17')
  num=len(scores)
  ###print datesofinterest
  plot.xticks(index + bar_width/2, datesofinterest,size='12')
  plot.yticks(size='12')
  axes = plot.gca()
  axes.set_ylim([200,800])
  plot.legend()

  plot.tight_layout()
  fig.savefig('img'+str(student_ids[i])+'.png')

阅读 268

收藏
2021-01-20

共1个答案

一尘不染

条的宽度相同!它们看起来不一样的原因是因为您正在使用以下行:

index = np.arange(n_groups)

这将更改您的x值,从而更改x轴的比例。为了抵消这种影响,您可以更改x轴的限制,也可以使条形宽度取决于分数的数量,例如,如果0.35的宽度适用于10个分数,那么如果将分数的数量加倍,条宽度的一半(反之亦然)。您可以看到更改轴限制或条宽度如何使条看起来相同的宽度:

import numpy as np
import matplotlib.pyplot as plt

# make some dummy data
scores_reading = np.random.randint(50,100,10)
scores_math = np.random.randint(50,100,10)

fig = plt.figure(figsize=(16,5))
bar_width = 0.35
index = np.arange(10)

ax1 = fig.add_subplot(1,4,1)
ax1.bar(index, scores_reading, bar_width, fc='b', edgecolor='none')
ax1.bar(index+bar_width, scores_math, bar_width, fc='r', edgecolor='none')
ax1.set_xlim(0,10)
ax1.set_title('Original - 10 scores')

ax2 = fig.add_subplot(1,4,2)
ax2.bar(index[:5], scores_reading[:5], bar_width, fc='b', edgecolor='none')
ax2.bar(index[:5]+bar_width, scores_math[:5], bar_width, fc='r', edgecolor='none')
ax2.set_title('Original - 5 scores')

ax3 = fig.add_subplot(1,4,3)
ax3.bar(index[:5], scores_reading[:5], bar_width, fc='b', edgecolor='none')
ax3.bar(index[:5]+bar_width, scores_math[:5], bar_width, fc='r', edgecolor='none')
ax3.set_xlim(0,10)
ax3.set_title('Changed limit - 5 scores')

ax4 = fig.add_subplot(1,4,4)
ax4.bar(index[:5], scores_reading[:5], bar_width/2., fc='b', edgecolor='none')
ax4.bar(index[:5]+bar_width, scores_math[:5], bar_width/2., fc='r', edgecolor='none')
ax4.set_title('Changed width - 5 scores')

fig.show()

在此处输入图片说明

2021-01-20