一尘不染

Python-大型数组的插值2D数组

python

我想插入尺寸为4x4的2D数组“测试”(例如,实际上接近于1000x1000),其形状为8x8的网格。

import numpy as np

X = np.arange(0,4,1)
Y = np.arange(0,4,1)

points = np.vstack((X,Y))
points = points.T #my coordinates

#my values as a 2D array
test = np.array([[ 1.2514318 ,  1.25145821,  1.25148472,  1.25151133],
       [ 1.25087456,  1.25090105,  1.25092764,  1.25095435],
       [ 1.25031581,  1.25034238,  1.25036907,  1.25039586],
       [ 1.24975557,  1.24978222,  1.24980898,  1.24983587]])

我尝试使用griddata,但似乎只能使用1D吗?错误告诉我,“值和点的数量不同”,我犯错了吗?

from scipy.interpolate import griddata
grid_x, grid_y = np.mgrid[0:4:8j, 0:4:8j]
grid_z0 = griddata(points, test, (grid_x, grid_y), method='linear')

阅读 268

收藏
2021-01-20

共1个答案

一尘不染

您可以使用scipy.interpolate.interp2d和进行此操作numpy.meshgrid

您需要确保新的X和Y范围与旧的范围相同,并且步长较小。这很容易np.linspace

import numpy as np
from scipy import interpolate

mymin,mymax = 0,3
X = np.linspace(mymin,mymax,4)
Y = np.linspace(mymin,mymax,4)

x,y = np.meshgrid(X,Y)

test = np.array([[ 1.2514318 ,  1.25145821,  1.25148472,  1.25151133],
       [ 1.25087456,  1.25090105,  1.25092764,  1.25095435],
       [ 1.25031581,  1.25034238,  1.25036907,  1.25039586],
       [ 1.24975557,  1.24978222,  1.24980898,  1.24983587]])

f = interpolate.interp2d(x,y,test,kind='cubic')

# use linspace so your new range also goes from 0 to 3, with 8 intervals
Xnew = np.linspace(mymin,mymax,8)
Ynew = np.linspace(mymin,mymax,8)

test8x8 = f(Xnew,Ynew)

print test8x8
>>> [[ 1.2514318   1.25144311  1.25145443  1.25146577  1.25147714  1.25148852  1.25149991  1.25151133]
     [ 1.25119317  1.25120449  1.25121583  1.25122719  1.25123856  1.25124995  1.25126137  1.25127281]
     [ 1.25095426  1.2509656   1.25097695  1.25098832  1.25099971  1.25101112  1.25102255  1.25103401]
     [ 1.25071507  1.25072642  1.25073779  1.25074918  1.25076059  1.25077201  1.25078346  1.25079494]
     [ 1.25047561  1.25048697  1.25049835  1.25050976  1.25052119  1.25053263  1.2505441   1.25055558]
     [ 1.25023587  1.25024724  1.25025864  1.25027007  1.25028151  1.25029297  1.25030446  1.25031595]
     [ 1.24999585  1.25000724  1.25001866  1.2500301   1.25004156  1.25005304  1.25006453  1.25007605]
     [ 1.24975557  1.24976698  1.24977841  1.24978985  1.24980132  1.24981281  1.24982433  1.24983587]]
2021-01-20