一尘不染

重复的记录组可填补Google BigQuery中的多个日期空白

sql

我发现了一个类似的问题(重复记录以填补Google
BigQuery中日期之间的空白
),但是存在不同的情况,答案不适用。

我的数据结构如下(基本上是多个产品和合作伙伴的价格变动历史记录):

+------------+---------+---------+-------+
|    date    | product | partner | value |
+------------+---------+---------+-------+
| 2017-01-01 | a       | x       |    10 |
| 2017-01-01 | b       | x       |    15 |
| 2017-01-01 | a       | y       |    11 |
| 2017-01-01 | b       | y       |    16 |
| 2017-01-05 | b       | x       |    13 |
| 2017-01-07 | a       | y       |    15 |
| 2017-01-07 | a       | x       |    15 |
+------------+---------+---------+-------+

我需要的是一个查询(特别是用BigQuery Standard
SQL编写),该查询在给定日期范围(在这种情况下2017-01-012017-01-10)下输出以下结果:

+--------------+---------+---------+-------+
|      date    | product | partner | value |
+--------------+---------+---------+-------+
|   2017-01-01 | a       | x       |    10 |
|   2017-01-02 | a       | x       |    10 |
|   2017-01-03 | a       | x       |    10 |
|   2017-01-04 | a       | x       |    10 |
|   2017-01-05 | a       | x       |    10 |
|   2017-01-06 | a       | x       |    10 |
|   2017-01-07 | a       | x       |    15 |
|   2017-01-08 | a       | x       |    15 |
|   2017-01-09 | a       | x       |    15 |
|   2017-01-10 | a       | x       |    15 |
|   2017-01-01 | a       | y       |    11 |
|   2017-01-02 | a       | y       |    11 |
|   2017-01-03 | a       | y       |    11 |
|   2017-01-04 | a       | y       |    11 |
|   2017-01-05 | a       | y       |    11 |
|   2017-01-06 | a       | y       |    11 |
|   2017-01-07 | a       | y       |    15 |
|   2017-01-08 | a       | y       |    15 |
|   2017-01-09 | a       | y       |    15 |
|   2017-01-10 | a       | y       |    15 |
|   2017-01-01 | b       | x       |    15 |
|   2017-01-02 | b       | x       |    15 |
|   2017-01-03 | b       | x       |    15 |
|   2017-01-04 | b       | x       |    15 |
|   2017-01-05 | b       | x       |    13 |
|   2017-01-06 | b       | x       |    13 |
|   2017-01-07 | b       | x       |    13 |
|   2017-01-08 | b       | x       |    13 |
|   2017-01-09 | b       | x       |    13 |
|   2017-01-10 | b       | x       |    13 |
|   2017-01-01 | b       | y       |    16 |
|   2017-01-02 | b       | y       |    16 |
|   2017-01-03 | b       | y       |    16 |
|   2017-01-04 | b       | y       |    16 |
|   2017-01-05 | b       | y       |    16 |
|   2017-01-06 | b       | y       |    16 |
|   2017-01-07 | b       | y       |    16 |
|   2017-01-08 | b       | y       |    16 |
|   2017-01-09 | b       | y       |    16 |
|   2017-01-10 | b       | y       |    16 |
+--------------+---------+---------+-------+

对于产品和合作伙伴的每种组合,基本上都是价格历史记录,其中包含所有日期差。

我很难弄清楚如何完成这项工作,尤其是如何在同一天没有价格变动的情况下生成多行。有任何想法吗?


阅读 203

收藏
2021-03-10

共1个答案

一尘不染

尝试下面

#standardSQL
WITH history AS (
  SELECT '2017-01-01' AS d, 'a' AS product, 'x' AS partner, 10 AS value UNION ALL
  SELECT '2017-01-01' AS d, 'b' AS product, 'x' AS partner, 15 AS value UNION ALL
  SELECT '2017-01-01' AS d, 'a' AS product, 'y' AS partner, 11 AS value UNION ALL
  SELECT '2017-01-01' AS d, 'b' AS product, 'y' AS partner, 16 AS value UNION ALL
  SELECT '2017-01-05' AS d, 'b' AS product, 'x' AS partner, 13 AS value UNION ALL
  SELECT '2017-01-07' AS d, 'a' AS product, 'y' AS partner, 15 AS value UNION ALL
  SELECT '2017-01-07' AS d, 'a' AS product, 'x' AS partner, 15 AS value 
),
daterange AS (
  SELECT date_in_range  
  FROM UNNEST(GENERATE_DATE_ARRAY('2017-01-01', '2017-01-10')) AS date_in_range 
),
temp AS (
  SELECT d, product, partner, value, LEAD(d) OVER(PARTITION BY product, partner ORDER BY d) AS next_d
  FROM history
  ORDER BY product, partner, d
)
SELECT date_in_range, product, partner, value
FROM daterange
JOIN temp
ON daterange.date_in_range >= PARSE_DATE('%Y-%m-%d', temp.d) 
AND (daterange.date_in_range < PARSE_DATE('%Y-%m-%d', temp.next_d) OR temp.next_d IS NULL)
ORDER BY product, partner, date_in_range
2021-03-10