一尘不染

确定整数平方根是否为整数的最快方法

javascript

我正在寻找确定一个long值是否是完美平方的最快方法(即它的平方根是另一个整数):

  1. 我通过使用内置Math.sqrt() 函数以简单的方式完成了它,但我想知道是否有一种方法可以通过将自己限制在仅限整数域来更快地完成它。
  2. 维护查找表是不切实际的(因为大约有 2 31.5个整数的平方小于 2 63)。

这是我现在正在做的非常简单直接的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在很多Project Euler问题中都使用了这个函数。因此,没有其他人将不得不维护此代码。这种微优化实际上可以产生影响,因为部分挑战是在不到一分钟的时间内完成每个算法,并且在某些问题中需要调用数百万次这个函数。


我尝试了不同的解决方案来解决这个问题:

  • 经过详尽的测试,我发现添加0.5到 Math.sqrt() 的结果是没有必要的,至少在我的机器上不是。
  • 快速反平方根更快,但它在n >= 410881 时给出了不正确的结果。但是,正如BobbyShaftoe所建议的,我们可以对 n < 410881 使用 FISR hack。
  • 牛顿的方法比Math.sqrt(). 这可能是因为Math.sqrt()它使用了类似于牛顿法的东西,但在硬件中实现,因此它比 Java 快得多。此外,牛顿法仍然需要使用双打。
  • 修改后的牛顿方法,它使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有正的 64 位有符号整数),它仍然比Math.sqrt().
  • 二进制斩波甚至更慢。这是有道理的,因为二进制斩波平均需要 16 遍才能找到 64 位数字的平方根。
  • 根据 John 的测试,or在 C++ 中 using 语句比使用 a 更快,但在 Java 和 C# 中, andswitch之间似乎没有区别。or``switch
  • 我还尝试制作一个查找表(作为 64 个布尔值的私有静态数组)。or然后,我只想说,而不是 switch 或语句if(lookup[(int)(n&0x3F)]) { test } else return false;。令我惊讶的是,这(只是稍微)慢了一点。

阅读 223

收藏
2022-02-22

共1个答案

一尘不染

我想出了一个比你的 6bits+Carmack+sqrt 代码快 35% 的方法,至少在我的 CPU (x86) 和编程语言 (C/C++) 上是这样。您的结果可能会有所不同,尤其是因为我不知道 Java 因素将如何发挥作用。

我的方法有三个:

  1. 首先,过滤掉明显的答案。这包括负数和查看最后 4 位。(我发现查看最后六个没有帮助。)我也对 0 回答是。(在阅读下面的代码时,请注意我的输入是

int64 x

。)

java if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) ) return false; if( x == 0 ) return true;

  1. 接下来,检查它是否是模 255 = 3 * 5 * 17 的平方。因为这是三个不同素数的乘积,所以模 255 的余数中只有大约 1/8 是平方。但是,根据我的经验,调用模运算符 (%) 的成本高于获得的收益,因此我使用涉及 255 = 2^8-1 的位技巧来计算残差。(无论好坏,我没有使用从单词中读取单个字节的技巧,只是按位与和移位。)

java int64 y = x; y = (y & 4294967295LL) + (y >> 32); y = (y & 65535) + (y >> 16); y = (y & 255) + ((y >> 8) & 255) + (y >> 16); // At this point, y is between 0 and 511. More code can reduce it farther.

为了实际检查余数是否为正方形,我在预先计算的表格中查找答案。

java if( bad255[y] ) return false; // However, I just use a table of size 512

  1. 最后,尝试使用类似于

Hensel 引理

的方法计算平方根。(我不认为它直接适用,但它可以通过一些修改来工作。)在此之前,我用二分搜索除以 2 的所有幂:

java if((x & 4294967295LL) == 0) x >>= 32; if((x & 65535) == 0) x >>= 16; if((x & 255) == 0) x >>= 8; if((x & 15) == 0) x >>= 4; if((x & 3) == 0) x >>= 2;

此时,要使我们的数字成为正方形,它必须是 1 mod 8。

java if((x & 7) != 1) return false;

亨塞尔引理的基本结构如下。(注意:未经测试的代码;如果不起作用,请尝试 t=2 或 8。)

java int64 t = 4, r = 1; t <<= 1; r += ((x - r * r) & t) >> 1; t <<= 1; r += ((x - r * r) & t) >> 1; t <<= 1; r += ((x - r * r) & t) >> 1; // Repeat until t is 2^33 or so. Use a loop if you want.

这个想法是,在每次迭代中,您将一位添加到 r 上,即 x 的“当前”平方根;每个平方根都精确模数越来越大的 2 次方,即 t/2。最后,r 和 t/2-r 将是 x 模 t/2 的平方根。(请注意,如果 r 是 x 的平方根,那么 -r 也是如此。偶数模数也是如此,但请注意,对某些数模数,事物的平方根甚至可能超过 2 个;值得注意的是,这包括 2 的幂。 ) 因为我们的实际平方根小于 2^32,此时我们实际上可以检查 r 或 t/2-r 是否是真正的平方根。在我的实际代码中,我使用了以下修改后的循环:

java int64 r, t, z; r = start[(x >> 3) & 1023]; do { z = x - r * r; if( z == 0 ) return true; if( z < 0 ) return false; t = z & (-z); r += (z & t) >> 1; if( r > (t >> 1) ) r = t - r; } while( t <= (1LL << 33) );

这里的加速是通过三种方式获得的:预先计算的起始值(相当于循环的约 10 次迭代)、循环的提前退出和跳过一些 t 值。对于最后一部分,我看一下

z = r - x * x

,并将 t 设置为 2 除 z 的最大幂,有点技巧。这使我可以跳过不会影响 r 值的 t 个值。在我的例子中,预先计算的起始值选择了“最小正”平方根模 8192。

即使这段代码对你来说运行得更快,我希望你喜欢它包含的一些想法。完整的、经过测试的代码如下,包括预先计算的表。

typedef signed long long int int64;

int start[1024] =
{1,3,1769,5,1937,1741,7,1451,479,157,9,91,945,659,1817,11,
1983,707,1321,1211,1071,13,1479,405,415,1501,1609,741,15,339,1703,203,
129,1411,873,1669,17,1715,1145,1835,351,1251,887,1573,975,19,1127,395,
1855,1981,425,453,1105,653,327,21,287,93,713,1691,1935,301,551,587,
257,1277,23,763,1903,1075,1799,1877,223,1437,1783,859,1201,621,25,779,
1727,573,471,1979,815,1293,825,363,159,1315,183,27,241,941,601,971,
385,131,919,901,273,435,647,1493,95,29,1417,805,719,1261,1177,1163,
1599,835,1367,315,1361,1933,1977,747,31,1373,1079,1637,1679,1581,1753,1355,
513,1539,1815,1531,1647,205,505,1109,33,1379,521,1627,1457,1901,1767,1547,
1471,1853,1833,1349,559,1523,967,1131,97,35,1975,795,497,1875,1191,1739,
641,1149,1385,133,529,845,1657,725,161,1309,375,37,463,1555,615,1931,
1343,445,937,1083,1617,883,185,1515,225,1443,1225,869,1423,1235,39,1973,
769,259,489,1797,1391,1485,1287,341,289,99,1271,1701,1713,915,537,1781,
1215,963,41,581,303,243,1337,1899,353,1245,329,1563,753,595,1113,1589,
897,1667,407,635,785,1971,135,43,417,1507,1929,731,207,275,1689,1397,
1087,1725,855,1851,1873,397,1607,1813,481,163,567,101,1167,45,1831,1205,
1025,1021,1303,1029,1135,1331,1017,427,545,1181,1033,933,1969,365,1255,1013,
959,317,1751,187,47,1037,455,1429,609,1571,1463,1765,1009,685,679,821,
1153,387,1897,1403,1041,691,1927,811,673,227,137,1499,49,1005,103,629,
831,1091,1449,1477,1967,1677,697,1045,737,1117,1737,667,911,1325,473,437,
1281,1795,1001,261,879,51,775,1195,801,1635,759,165,1871,1645,1049,245,
703,1597,553,955,209,1779,1849,661,865,291,841,997,1265,1965,1625,53,
1409,893,105,1925,1297,589,377,1579,929,1053,1655,1829,305,1811,1895,139,
575,189,343,709,1711,1139,1095,277,993,1699,55,1435,655,1491,1319,331,
1537,515,791,507,623,1229,1529,1963,1057,355,1545,603,1615,1171,743,523,
447,1219,1239,1723,465,499,57,107,1121,989,951,229,1521,851,167,715,
1665,1923,1687,1157,1553,1869,1415,1749,1185,1763,649,1061,561,531,409,907,
319,1469,1961,59,1455,141,1209,491,1249,419,1847,1893,399,211,985,1099,
1793,765,1513,1275,367,1587,263,1365,1313,925,247,1371,1359,109,1561,1291,
191,61,1065,1605,721,781,1735,875,1377,1827,1353,539,1777,429,1959,1483,
1921,643,617,389,1809,947,889,981,1441,483,1143,293,817,749,1383,1675,
63,1347,169,827,1199,1421,583,1259,1505,861,457,1125,143,1069,807,1867,
2047,2045,279,2043,111,307,2041,597,1569,1891,2039,1957,1103,1389,231,2037,
65,1341,727,837,977,2035,569,1643,1633,547,439,1307,2033,1709,345,1845,
1919,637,1175,379,2031,333,903,213,1697,797,1161,475,1073,2029,921,1653,
193,67,1623,1595,943,1395,1721,2027,1761,1955,1335,357,113,1747,1497,1461,
1791,771,2025,1285,145,973,249,171,1825,611,265,1189,847,1427,2023,1269,
321,1475,1577,69,1233,755,1223,1685,1889,733,1865,2021,1807,1107,1447,1077,
1663,1917,1129,1147,1775,1613,1401,555,1953,2019,631,1243,1329,787,871,885,
449,1213,681,1733,687,115,71,1301,2017,675,969,411,369,467,295,693,
1535,509,233,517,401,1843,1543,939,2015,669,1527,421,591,147,281,501,
577,195,215,699,1489,525,1081,917,1951,2013,73,1253,1551,173,857,309,
1407,899,663,1915,1519,1203,391,1323,1887,739,1673,2011,1585,493,1433,117,
705,1603,1111,965,431,1165,1863,533,1823,605,823,1179,625,813,2009,75,
1279,1789,1559,251,657,563,761,1707,1759,1949,777,347,335,1133,1511,267,
833,1085,2007,1467,1745,1805,711,149,1695,803,1719,485,1295,1453,935,459,
1151,381,1641,1413,1263,77,1913,2005,1631,541,119,1317,1841,1773,359,651,
961,323,1193,197,175,1651,441,235,1567,1885,1481,1947,881,2003,217,843,
1023,1027,745,1019,913,717,1031,1621,1503,867,1015,1115,79,1683,793,1035,
1089,1731,297,1861,2001,1011,1593,619,1439,477,585,283,1039,1363,1369,1227,
895,1661,151,645,1007,1357,121,1237,1375,1821,1911,549,1999,1043,1945,1419,
1217,957,599,571,81,371,1351,1003,1311,931,311,1381,1137,723,1575,1611,
767,253,1047,1787,1169,1997,1273,853,1247,413,1289,1883,177,403,999,1803,
1345,451,1495,1093,1839,269,199,1387,1183,1757,1207,1051,783,83,423,1995,
639,1155,1943,123,751,1459,1671,469,1119,995,393,219,1743,237,153,1909,
1473,1859,1705,1339,337,909,953,1771,1055,349,1993,613,1393,557,729,1717,
511,1533,1257,1541,1425,819,519,85,991,1693,503,1445,433,877,1305,1525,
1601,829,809,325,1583,1549,1991,1941,927,1059,1097,1819,527,1197,1881,1333,
383,125,361,891,495,179,633,299,863,285,1399,987,1487,1517,1639,1141,
1729,579,87,1989,593,1907,839,1557,799,1629,201,155,1649,1837,1063,949,
255,1283,535,773,1681,461,1785,683,735,1123,1801,677,689,1939,487,757,
1857,1987,983,443,1327,1267,313,1173,671,221,695,1509,271,1619,89,565,
127,1405,1431,1659,239,1101,1159,1067,607,1565,905,1755,1231,1299,665,373,
1985,701,1879,1221,849,627,1465,789,543,1187,1591,923,1905,979,1241,181};

bool bad255[512] =
{0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0};

inline bool square( int64 x ) {
    // Quickfail
    if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
        return false;
    if( x == 0 )
        return true;

    // Check mod 255 = 3 * 5 * 17, for fun
    int64 y = x;
    y = (y & 4294967295LL) + (y >> 32);
    y = (y & 65535) + (y >> 16);
    y = (y & 255) + ((y >> 8) & 255) + (y >> 16);
    if( bad255[y] )
        return false;

    // Divide out powers of 4 using binary search
    if((x & 4294967295LL) == 0)
        x >>= 32;
    if((x & 65535) == 0)
        x >>= 16;
    if((x & 255) == 0)
        x >>= 8;
    if((x & 15) == 0)
        x >>= 4;
    if((x & 3) == 0)
        x >>= 2;

    if((x & 7) != 1)
        return false;

    // Compute sqrt using something like Hensel's lemma
    int64 r, t, z;
    r = start[(x >> 3) & 1023];
    do {
        z = x - r * r;
        if( z == 0 )
            return true;
        if( z < 0 )
            return false;
        t = z & (-z);
        r += (z & t) >> 1;
        if( r > (t  >> 1) )
            r = t - r;
    } while( t <= (1LL << 33) );

    return false;
}
2022-02-22