是否有使用泛型创建不依赖于存储数据的基本类型的数学库的可行方法?
换句话说,假设我要编写一个Fraction类。分数可以用两个整数或两个双精度数或其他形式表示。重要的是基本的四个算术运算都已定义好。因此,我希望能够编写Fraction<int> frac = new Fraction<int>(1,2)和/或Fraction<double> frac = new Fraction<double>(0.1, 1.0)。
Fraction<int> frac = new Fraction<int>(1,2)
Fraction<double> frac = new Fraction<double>(0.1, 1.0)
不幸的是,没有接口代表四个基本操作(+,-,*,/)。有没有人找到可行的,可行的方法来实现这一目标?
这是一种相对简单的抽象操作员的方法。
abstract class MathProvider<T> { public abstract T Divide(T a, T b); public abstract T Multiply(T a, T b); public abstract T Add(T a, T b); public abstract T Negate(T a); public virtual T Subtract(T a, T b) { return Add(a, Negate(b)); } } class DoubleMathProvider : MathProvider<double> { public override double Divide(double a, double b) { return a / b; } public override double Multiply(double a, double b) { return a * b; } public override double Add(double a, double b) { return a + b; } public override double Negate(double a) { return -a; } } class IntMathProvider : MathProvider<int> { public override int Divide(int a, int b) { return a / b; } public override int Multiply(int a, int b) { return a * b; } public override int Add(int a, int b) { return a + b; } public override int Negate(int a) { return -a; } } class Fraction<T> { static MathProvider<T> _math; // Notice this is a type constructor. It gets run the first time a // variable of a specific type is declared for use. // Having _math static reduces overhead. static Fraction() { // This part of the code might be cleaner by once // using reflection and finding all the implementors of // MathProvider and assigning the instance by the one that // matches T. if (typeof(T) == typeof(double)) _math = new DoubleMathProvider() as MathProvider<T>; else if (typeof(T) == typeof(int)) _math = new IntMathProvider() as MathProvider<T>; // ... assign other options here. if (_math == null) throw new InvalidOperationException( "Type " + typeof(T).ToString() + " is not supported by Fraction."); } // Immutable impementations are better. public T Numerator { get; private set; } public T Denominator { get; private set; } public Fraction(T numerator, T denominator) { // We would want this to be reduced to simpilest terms. // For that we would need GCD, abs, and remainder operations // defined for each math provider. Numerator = numerator; Denominator = denominator; } public static Fraction<T> operator +(Fraction<T> a, Fraction<T> b) { return new Fraction<T>( _math.Add( _math.Multiply(a.Numerator, b.Denominator), _math.Multiply(b.Numerator, a.Denominator)), _math.Multiply(a.Denominator, b.Denominator)); } public static Fraction<T> operator -(Fraction<T> a, Fraction<T> b) { return new Fraction<T>( _math.Subtract( _math.Multiply(a.Numerator, b.Denominator), _math.Multiply(b.Numerator, a.Denominator)), _math.Multiply(a.Denominator, b.Denominator)); } public static Fraction<T> operator /(Fraction<T> a, Fraction<T> b) { return new Fraction<T>( _math.Multiply(a.Numerator, b.Denominator), _math.Multiply(a.Denominator, b.Numerator)); } // ... other operators would follow. }
如果无法实现所使用的类型,则将在运行时而不是编译时失败(这很糟糕)。实现的定义将MathProvider<T>始终是相同的(也很糟糕)。我建议您只是避免在C#中执行此操作,而应使用F#或其他更适合此抽象级别的语言。
MathProvider<T>
编辑: 修复了加法和减法的定义Fraction<T>。另一个有趣且简单的事情是实现在抽象语法树上运行的MathProvider。这个想法立即指向做诸如自动区分的事情:http : //conal.net/papers/beautiful- differentiation/
Fraction<T>