我在谷歌上搜索,自学并寻找解决方案几个小时,但没有运气。我在这里发现了一些类似的问题,但不是这种情况。
我的表:
完全转储 ~280MB
情况: 我尝试person_id从某些位置( )中选择所有人员 id( location.attribute_value BETWEEN 3000 AND 7000),具有某种性别(gender.attribute_value = 1),出生于某些年份(bornyear.attribute_value BETWEEN 1980 AND 2000)并具有某种眼睛的颜色(eyecolor.attribute_value IN (2,3))。
person_id
location.attribute_value BETWEEN 3000 AND 7000
gender.attribute_value = 1
bornyear.attribute_value BETWEEN 1980 AND 2000
eyecolor.attribute_value IN (2,3)
这是我的查询女巫需要3~4 分钟。我想优化:
SELECT person_id FROM person LEFT JOIN attribute location ON location.attribute_type_id = 1 AND location.person_id = person.person_id LEFT JOIN attribute gender ON gender.attribute_type_id = 2 AND gender.person_id = person.person_id LEFT JOIN attribute bornyear ON bornyear.attribute_type_id = 3 AND bornyear.person_id = person.person_id LEFT JOIN attribute eyecolor ON eyecolor.attribute_type_id = 4 AND eyecolor.person_id = person.person_id WHERE 1 AND location.attribute_value BETWEEN 3000 AND 7000 AND gender.attribute_value = 1 AND bornyear.attribute_value BETWEEN 1980 AND 2000 AND eyecolor.attribute_value IN (2,3) LIMIT 100000;
结果:
+-----------+ | person_id | +-----------+ | 233 | | 605 | | ... | | 8702599 | | 8703617 | +-----------+ 100000 rows in set (3 min 42.77 sec)
解释扩展:
+----+-------------+----------+--------+---------------------------------------------+-----------------+---------+--------------------------+---------+----------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+----------+--------+---------------------------------------------+-----------------+---------+--------------------------+---------+----------+--------------------------+ | 1 | SIMPLE | bornyear | range | attribute_type_id,attribute_value,person_id | attribute_value | 5 | NULL | 1265229 | 100.00 | Using where | | 1 | SIMPLE | location | ref | attribute_type_id,attribute_value,person_id | person_id | 5 | test1.bornyear.person_id | 4 | 100.00 | Using where | | 1 | SIMPLE | eyecolor | ref | attribute_type_id,attribute_value,person_id | person_id | 5 | test1.bornyear.person_id | 4 | 100.00 | Using where | | 1 | SIMPLE | gender | ref | attribute_type_id,attribute_value,person_id | person_id | 5 | test1.eyecolor.person_id | 4 | 100.00 | Using where | | 1 | SIMPLE | person | eq_ref | PRIMARY | PRIMARY | 4 | test1.location.person_id | 1 | 100.00 | Using where; Using index | +----+-------------+----------+--------+---------------------------------------------+-----------------+---------+--------------------------+---------+----------+--------------------------+ 5 rows in set, 1 warning (0.02 sec)
分析:
+------------------------------+-----------+ | Status | Duration | +------------------------------+-----------+ | Sending data | 3.069452 | | Waiting for query cache lock | 0.000017 | | Sending data | 2.968915 | | Waiting for query cache lock | 0.000019 | | Sending data | 3.042468 | | Waiting for query cache lock | 0.000043 | | Sending data | 3.264984 | | Waiting for query cache lock | 0.000017 | | Sending data | 2.823919 | | Waiting for query cache lock | 0.000038 | | Sending data | 2.863903 | | Waiting for query cache lock | 0.000014 | | Sending data | 2.971079 | | Waiting for query cache lock | 0.000020 | | Sending data | 3.053197 | | Waiting for query cache lock | 0.000087 | | Sending data | 3.099053 | | Waiting for query cache lock | 0.000035 | | Sending data | 3.064186 | | Waiting for query cache lock | 0.000017 | | Sending data | 2.939404 | | Waiting for query cache lock | 0.000018 | | Sending data | 3.440288 | | Waiting for query cache lock | 0.000086 | | Sending data | 3.115798 | | Waiting for query cache lock | 0.000068 | | Sending data | 3.075427 | | Waiting for query cache lock | 0.000072 | | Sending data | 3.658319 | | Waiting for query cache lock | 0.000061 | | Sending data | 3.335427 | | Waiting for query cache lock | 0.000049 | | Sending data | 3.319430 | | Waiting for query cache lock | 0.000061 | | Sending data | 3.496563 | | Waiting for query cache lock | 0.000029 | | Sending data | 3.017041 | | Waiting for query cache lock | 0.000032 | | Sending data | 3.132841 | | Waiting for query cache lock | 0.000050 | | Sending data | 2.901310 | | Waiting for query cache lock | 0.000016 | | Sending data | 3.107269 | | Waiting for query cache lock | 0.000062 | | Sending data | 2.937373 | | Waiting for query cache lock | 0.000016 | | Sending data | 3.097082 | | Waiting for query cache lock | 0.000261 | | Sending data | 3.026108 | | Waiting for query cache lock | 0.000026 | | Sending data | 3.089760 | | Waiting for query cache lock | 0.000041 | | Sending data | 3.012763 | | Waiting for query cache lock | 0.000021 | | Sending data | 3.069694 | | Waiting for query cache lock | 0.000046 | | Sending data | 3.591908 | | Waiting for query cache lock | 0.000060 | | Sending data | 3.526693 | | Waiting for query cache lock | 0.000076 | | Sending data | 3.772659 | | Waiting for query cache lock | 0.000069 | | Sending data | 3.346089 | | Waiting for query cache lock | 0.000245 | | Sending data | 3.300460 | | Waiting for query cache lock | 0.000019 | | Sending data | 3.135361 | | Waiting for query cache lock | 0.000021 | | Sending data | 2.909447 | | Waiting for query cache lock | 0.000039 | | Sending data | 3.337561 | | Waiting for query cache lock | 0.000140 | | Sending data | 3.138180 | | Waiting for query cache lock | 0.000090 | | Sending data | 3.060687 | | Waiting for query cache lock | 0.000085 | | Sending data | 2.938677 | | Waiting for query cache lock | 0.000041 | | Sending data | 2.977974 | | Waiting for query cache lock | 0.000872 | | Sending data | 2.918640 | | Waiting for query cache lock | 0.000036 | | Sending data | 2.975842 | | Waiting for query cache lock | 0.000051 | | Sending data | 2.918988 | | Waiting for query cache lock | 0.000021 | | Sending data | 2.943810 | | Waiting for query cache lock | 0.000061 | | Sending data | 3.330211 | | Waiting for query cache lock | 0.000025 | | Sending data | 3.411236 | | Waiting for query cache lock | 0.000023 | | Sending data | 23.339035 | | end | 0.000807 | | query end | 0.000023 | | closing tables | 0.000325 | | freeing items | 0.001217 | | logging slow query | 0.000007 | | logging slow query | 0.000011 | | cleaning up | 0.000104 | +------------------------------+-----------+ 100 rows in set (0.00 sec)
表结构:
CREATE TABLE `attribute` ( `attribute_id` int(11) unsigned NOT NULL AUTO_INCREMENT, `attribute_type_id` int(11) unsigned DEFAULT NULL, `attribute_value` int(6) DEFAULT NULL, `person_id` int(11) unsigned DEFAULT NULL, PRIMARY KEY (`attribute_id`), KEY `attribute_type_id` (`attribute_type_id`), KEY `attribute_value` (`attribute_value`), KEY `person_id` (`person_id`) ) ENGINE=MyISAM AUTO_INCREMENT=40000001 DEFAULT CHARSET=utf8; CREATE TABLE `person` ( `person_id` int(11) unsigned NOT NULL AUTO_INCREMENT, `person_name` text CHARACTER SET latin1, PRIMARY KEY (`person_id`) ) ENGINE=MyISAM AUTO_INCREMENT=20000001 DEFAULT CHARSET=utf8;
已在具有 SSD 和 1GB RAM 的 DigitalOcean 虚拟服务器上执行查询。
我认为数据库设计可能存在问题。你有什么建议可以更好地设计这种情况吗?还是只是调整上面的选择?
选择一些要包含在person. 以几种组合对它们进行索引——使用复合索引,而不是单列索引。
这本质上是摆脱 EAV-sucks-at-performance 的唯一出路,这就是您所在的位置。