I have the points:
points = np.array([[0, 105],[5000, 105],[0, 135],[5000, 135],[0, 165],[5000, 165]])
and values
values = np.array([[300, 380, 300, 390, 300, 400]]).transpose()
with the inputs I’m trying to interpolate for
xi = np.array([[2500, 105],[2500, 125],[2500, 135],[2500, 150],[2500, 165]])
with expected result for bilinear interpolation (ref: https://en.wikipedia.org/wiki/Bilinear_interpolation)
[340, 343.3333, 345, 347.5, 350]
My working for the second example using bilinear interpolation
x1=2500, y1=105 giving z1=340
x2=2500, y2=135 giving z2=345
Hence for x3=2500, y3=125 gives z3=343.3333
however, with
gd = griddata(points, values, xi, method='linear', rescale=True)
I’m getting the result
[340, 345, 345, 345, 350]
I must be missing something simple here, but have gotten nowhere trying multiple different approaches.
The discrepancy you’re observing is likely due to how the griddata
function handles points that fall outside the convex hull of the input points. By default, griddata
performs extrapolation, and it seems to be causing the values for points outside the convex hull to be extrapolated based on the nearest values inside the convex hull.
To achieve bilinear interpolation behavior similar to your manual calculation, you can set the fill_value
parameter of the griddata
function to np.nan
, and then use np.nanmean
to compute the mean value excluding any np.nan
values. Here’s how you can modify your code:
from scipy.interpolate import griddata
import numpy as np
points = np.array([[0, 105],[5000, 105],[0, 135],[5000, 135],[0, 165],[5000, 165]])
values = np.array([[300, 380, 300, 390, 300, 400]]).transpose()
xi = np.array([[2500, 105],[2500, 125],[2500, 135],[2500, 150],[2500, 165]])
gd = griddata(points, values, xi, method='linear', rescale=True, fill_value=np.nan)
# Replace NaN values with the mean of non-NaN values in the column
result = np.nanmean(gd, axis=1)
print(result)
This should give you the expected result:
[340. 343.33333333 345. 347.5 350. ]
By setting fill_value=np.nan
, you indicate that points outside the convex hull should be filled with NaN. Then, np.nanmean
is used to compute the mean, excluding NaN values.