小能豆

如何在三维空间中绕 x 轴旋转正方形

py

所以我一直在尝试学习 3D 渲染的工作原理。我尝试编写一个脚本,目标是在 3D 空间中旋转平面(2D)正方形。我首先在标准化空间 (-1, 1) 中定义一个正方形。请注意,只有 x 和 y 是标准化的。

class Vec3:
    #  3D VECTOR
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

s = 1
p1 = Vec3(-s, -s, -s) 
p2 = Vec3(s, -s, -s)
p3 = Vec3(s, s, -s)
p4 = Vec3(-s, s, -s)

然后将这些点翻译到屏幕上:

p1.z += 6
p2.z += 6
p3.z += 6
p4.z += 6

此后的所有操作都在应用程序循环内完成。我使用以下函数将点缩放到屏幕上并应用投影:

class Transform:
    # IT TRANSFORMS THE X AND Y FROM NORMALISED SPACE TO SCREEN SPACE WITH PROJECTION APPLIED 
    def worldSpaceTransform(self, vec3, w, h):
        if vec3.z == 0:
            vec3.z = 0.001
        zInverse = 1/ vec3.z
        xTransformed = ((vec3.x * zInverse) + 1) * (w/2)
        yTransformed = ((-vec3.y * zInverse) + 1) * (h/2)
        xTransformed = str(xTransformed)[:6]
        yTransformed = str(yTransformed)[:6]
        return Vec2(float(xTransformed), float(yTransformed))

像这样:

# TRANSLATING THE SQUARE SHEET INTO THE SCREEN SPACE
    point1 = transform.worldSpaceTransform(p1, SCREENWIDTH, SCREENHEIGHT)
    point2 = transform.worldSpaceTransform(p2, SCREENWIDTH, SCREENHEIGHT)
    point3 = transform.worldSpaceTransform(p3, SCREENWIDTH, SCREENHEIGHT)
    point4 = transform.worldSpaceTransform(p4, SCREENWIDTH, SCREENHEIGHT)

并得出以下几点:

# STORING THE POINTS TO A TUPLE SO IT CAN BE DRAWN USING pygame.draw.lines
    points = ((point1.x, point1.y), (point2.x, point2.y),
              (point2.x, point2.y), (point3.x, point3.y),
              (point3.x, point3.y), (point4.x, point4.y),
              (point4.x, point4.y), (point1.x, point1.y))
    pygame.draw.lines(D, (0, 0, 0), False, points)

到目前为止一切都正常(我认为),因为它绘制了一个正方形,正如它应该的那样。

现在开始旋转。我尝试了所有轴的旋转,但都不起作用,但为了具体起见,我将讨论 x 轴。以下是旋转类。我从维基百科复制了旋转矩阵。我不完全确定它们是如何工作的,所以我也不知道它是否与我上面描述的系统兼容。

def multVecMatrix(vec3, mat3):
    # MULTIPLIES A Vec3 OBJECT WITH Mat3 OBJECT AND RETURNS A NEW Vec3  ? 
    x = vec3.x * mat3.matrix[0][0] + vec3.y * mat3.matrix[0][1] + vec3.z * mat3.matrix[0][2]
    y = vec3.x * mat3.matrix[1][0] + vec3.y * mat3.matrix[1][1] + vec3.z * mat3.matrix[1][2]
    z = vec3.x * mat3.matrix[2][0] + vec3.y * mat3.matrix[2][1] + vec3.z * mat3.matrix[2][2]
    return Vec3(x, y, z)

class Rotation:
    def rotateX(self, theta):
        # ROTATION MATRIX IN X AXIS ??
        sinTheta = sin(theta)
        cosTheta = cos(theta)
        m = Mat3()
        m.matrix = [[1, 0,         0],
                    [0, cosTheta,  sinTheta],
                    [0, -sinTheta, cosTheta]]
        return m

    def rotate(self, vec3, theta, axis=None):
        # ROTATES A Vec3 BY GIVEN THETA AND AXIS ??
        if axis == "x":
            return multVecMatrix(vec3, self.rotateX(theta))
        if axis == "y":
            return multVecMatrix(vec3, self.rotateY(theta))
        if axis == "z":
            return multVecMatrix(vec3, self.rotateZ(theta)) 

在将屏幕填充为白色之后以及将点从标准空间缩放到屏幕空间之前,它会像这样被调用。

    # screen is filled with white color
    # ROTATING THE POINTS AROUND X AXIS ?????

    p1.x = rotation.rotate(p1, thetax, axis='x').x
    p1.y = rotation.rotate(p1, thetay, axis='x').y
    p1.z = rotation.rotate(p1, thetax, axis='x').z

    p2.x = rotation.rotate(p2, thetax, axis='x').x
    p2.y = rotation.rotate(p2, thetay, axis='x').y
    p2.z = rotation.rotate(p2, thetax, axis='x').z

    p3.x = rotation.rotate(p3, thetax, axis='x').x
    p3.y = rotation.rotate(p3, thetay, axis='x').y
    p3.z = rotation.rotate(p3, thetax, axis='x').z

    p4.x = rotation.rotate(p4, thetax, axis='x').x
    p4.y = rotation.rotate(p4, thetay, axis='x').y
    p4.z = rotation.rotate(p4, thetax, axis='x').z

    # then the points are translated into world space

应用旋转后,它看起来像是在移动并绕着 x 轴旋转,但没有旋转。我希望它旋转但保持在原位。我做错了什么?

完整的复制粘贴代码供参考:

import pygame
from math import sin, cos, radians
pygame.init()

### PYGAME STUFF ######################################

SCREENWIDTH = 600
SCREENHEIGHT = 600
D = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT))
pygame.display.set_caption("PRESS SPACE TO ROTATE AROUND X")

######### MATH FUNCTIONS AND CLASSES ####################

class Mat3:
    # 3X3 MATRIX INITIALIZED WITH ALL 0's
    def __init__(self):
        self.matrix = [[0 for i in range(3)],
                      [0 for i in range(3)],
                      [0 for i in range(3)]]

class Vec2:
    # 2D VECTOR
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Vec3:
    #  3D VECTOR
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

def multVecMatrix(vec3, mat3):
    # MULTIPLIES A Vec3 OBJECT WITH Mat3 OBJECT AND RETURNS A NEW Vec3 
    x = vec3.x * mat3.matrix[0][0] + vec3.y * mat3.matrix[0][1] + vec3.z * mat3.matrix[0][2]
    y = vec3.x * mat3.matrix[1][0] + vec3.y * mat3.matrix[1][1] + vec3.z * mat3.matrix[1][2]
    z = vec3.x * mat3.matrix[2][0] + vec3.y * mat3.matrix[2][1] + vec3.z * mat3.matrix[1][2]
    return Vec3(x, y, z)

class Transform:
    # IT TRANSFORMS THE X AND Y FROM NORMALIZED SPACE TO SCREEN SPACE WITH PROJECTION APPLIED
    def worldSpaceTransform(self, vec3, w, h):
        if vec3.z == 0:
            vec3.z = 0.001
        zInverse = 1/ vec3.z
        xTransformed = ((vec3.x * zInverse) + 1) * (w/2)
        yTransformed = ((-vec3.y * zInverse) + 1) * (h/2)
        xTransformed = str(xTransformed)[:6]
        yTransformed = str(yTransformed)[:6]
        return Vec2(float(xTransformed), float(yTransformed))

class Rotation:
    def rotateX(self, theta):
        # ROTATION MATRIX IN X AXIS
        sinTheta = sin(theta)
        cosTheta = cos(theta)
        m = Mat3()
        m.matrix = [[1, 0,         0],
                    [0, cosTheta,  sinTheta],
                    [0, -sinTheta, cosTheta]]
        return m

    def rotate(self, vec3, theta, axis=None):
        # ROTATES A Vec3 BY GIVEN THETA AND AXIS
        if axis == "x":
            return multVecMatrix(vec3, self.rotateX(theta))
        if axis == "y":
            return multVecMatrix(vec3, self.rotateY(theta))
        if axis == "z":
            return multVecMatrix(vec3, self.rotateZ(theta))

transform = Transform()
rotation = Rotation()


# ASSIGNING 4 Vec3's FOR 4 SIDES OF SQUARE IN NORMALIZED SPACE
s = 1
p1 = Vec3(-s, -s, -s) 
p2 = Vec3(s, -s, -s)
p3 = Vec3(s, s, -s)
p4 = Vec3(-s, s, -s)

# TRANSLATING THE POINTS OF THE CUBE A LITTLE BIT INTO THE SCREEN
p1.z += 6
p2.z += 6
p3.z += 6
p4.z += 6

# ASSIGNING THE ROTATION ANGLES
thetax = 0

# APPLICATION LOOP
while True:
    pygame.event.get()
    D.fill((255, 255, 255))


    # ROTATING THE POINTS AROUND X AXIS

    p1.x = rotation.rotate(p1, thetax, axis='x').x
    p1.y = rotation.rotate(p1, thetax, axis='x').y
    p1.z = rotation.rotate(p1, thetax, axis='x').z

    p2.x = rotation.rotate(p2, thetax, axis='x').x
    p2.y = rotation.rotate(p2, thetax, axis='x').y
    p2.z = rotation.rotate(p2, thetax, axis='x').z

    p3.x = rotation.rotate(p3, thetax, axis='x').x
    p3.y = rotation.rotate(p3, thetax, axis='x').y
    p3.z = rotation.rotate(p3, thetax, axis='x').z

    p4.x = rotation.rotate(p4, thetax, axis='x').x
    p4.y = rotation.rotate(p4, thetax, axis='x').y
    p4.z = rotation.rotate(p4, thetax, axis='x').z


    # TRANSLATING THE SQUARE SHEET INTO THE SCREEN SPACE
    point1 = transform.worldSpaceTransform(p1, SCREENWIDTH, SCREENHEIGHT)
    point2 = transform.worldSpaceTransform(p2, SCREENWIDTH, SCREENHEIGHT)
    point3 = transform.worldSpaceTransform(p3, SCREENWIDTH, SCREENHEIGHT)
    point4 = transform.worldSpaceTransform(p4, SCREENWIDTH, SCREENHEIGHT)

    # STORING THE POINTS TO A TUPLE SO IT CAN BE DRAWN USING pygame.draw.lines
    points = ((point1.x, point1.y), (point2.x, point2.y),
              (point2.x, point2.y), (point3.x, point3.y),
              (point3.x, point3.y), (point4.x, point4.y),
              (point4.x, point4.y), (point1.x, point1.y))


    keys = pygame.key.get_pressed()
    # ROTATE X ?
    if keys[pygame.K_SPACE]:
        thetax -= 0.005

    pygame.draw.lines(D, (0, 0, 0), False, points)

    pygame.display.flip()

阅读 23

收藏
2024-12-03

共1个答案

小能豆

从你的代码中,我看到你已经非常接近正确的实现了3D旋转。你使用的是旋转矩阵,并且尝试将每个点旋转到新的位置。不过,问题可能出在旋转的处理上以及如何使用 theta 角度。

问题诊断:

  1. 旋转角度单位:在你的代码中,旋转的角度 thetax 没有明确指出是以什么单位为基础的。如果你没有明确转换角度,theta 可能是以度为单位,但在Python的 math.sin()math.cos() 函数中,它们期望的角度是以弧度为单位的。因此,你需要确保将 theta 转换为弧度。

  2. 旋转应用的顺序:在你的代码中,你多次调用 rotation.rotate() 来分别更新每个轴上的坐标,应该是没有问题的。不过你只需要旋转 x 轴而不是 xy。因此,你不需要分别更新 p1.xp1.yp1.z,你只需要旋转 p1 作为一个整体。

解决方案:

  1. 旋转角度单位:将角度转换为弧度。
  2. 简化旋转应用:直接用 rotation.rotate() 旋转每个点。

我将会修改你的代码来解决这些问题:

修改后的代码:

import pygame
from math import sin, cos, radians
pygame.init()

### PYGAME STUFF ######################################

SCREENWIDTH = 600
SCREENHEIGHT = 600
D = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT))
pygame.display.set_caption("PRESS SPACE TO ROTATE AROUND X")

######### MATH FUNCTIONS AND CLASSES ####################

class Mat3:
    # 3X3 MATRIX INITIALIZED WITH ALL 0's
    def __init__(self):
        self.matrix = [[0 for i in range(3)],
                      [0 for i in range(3)],
                      [0 for i in range(3)]]

class Vec2:
    # 2D VECTOR
    def __init__(self, x, y):
        self.x = x
        self.y = y

class Vec3:
    #  3D VECTOR
    def __init__(self, x, y, z):
        self.x = x
        self.y = y
        self.z = z

def multVecMatrix(vec3, mat3):
    # MULTIPLIES A Vec3 OBJECT WITH Mat3 OBJECT AND RETURNS A NEW Vec3 
    x = vec3.x * mat3.matrix[0][0] + vec3.y * mat3.matrix[0][1] + vec3.z * mat3.matrix[0][2]
    y = vec3.x * mat3.matrix[1][0] + vec3.y * mat3.matrix[1][1] + vec3.z * mat3.matrix[1][2]
    z = vec3.x * mat3.matrix[2][0] + vec3.y * mat3.matrix[2][1] + vec3.z * mat3.matrix[1][2]
    return Vec3(x, y, z)

class Transform:
    # IT TRANSFORMS THE X AND Y FROM NORMALIZED SPACE TO SCREEN SPACE WITH PROJECTION APPLIED
    def worldSpaceTransform(self, vec3, w, h):
        if vec3.z == 0:
            vec3.z = 0.001
        zInverse = 1 / vec3.z
        xTransformed = ((vec3.x * zInverse) + 1) * (w / 2)
        yTransformed = ((-vec3.y * zInverse) + 1) * (h / 2)
        xTransformed = str(xTransformed)[:6]
        yTransformed = str(yTransformed)[:6]
        return Vec2(float(xTransformed), float(yTransformed))

class Rotation:
    def rotateX(self, theta):
        # ROTATION MATRIX IN X AXIS
        sinTheta = sin(theta)
        cosTheta = cos(theta)
        m = Mat3()
        m.matrix = [[1, 0, 0],
                    [0, cosTheta, sinTheta],
                    [0, -sinTheta, cosTheta]]
        return m

    def rotate(self, vec3, theta, axis=None):
        # ROTATES A Vec3 BY GIVEN THETA AND AXIS
        if axis == "x":
            return multVecMatrix(vec3, self.rotateX(theta))
        if axis == "y":
            return multVecMatrix(vec3, self.rotateY(theta))
        if axis == "z":
            return multVecMatrix(vec3, self.rotateZ(theta))

transform = Transform()
rotation = Rotation()

# ASSIGNING 4 Vec3's FOR 4 SIDES OF SQUARE IN NORMALIZED SPACE
s = 1
p1 = Vec3(-s, -s, -s) 
p2 = Vec3(s, -s, -s)
p3 = Vec3(s, s, -s)
p4 = Vec3(-s, s, -s)

# TRANSLATING THE POINTS OF THE CUBE A LITTLE BIT INTO THE SCREEN
p1.z += 6
p2.z += 6
p3.z += 6
p4.z += 6

# ASSIGNING THE ROTATION ANGLES (in degrees)
thetax = 0

# APPLICATION LOOP
while True:
    pygame.event.get()
    D.fill((255, 255, 255))

    # Convert degrees to radians (ensure theta is in radians)
    thetax_rad = radians(thetax)

    # ROTATING THE POINTS AROUND X AXIS (all at once)
    p1 = rotation.rotate(p1, thetax_rad, axis='x')
    p2 = rotation.rotate(p2, thetax_rad, axis='x')
    p3 = rotation.rotate(p3, thetax_rad, axis='x')
    p4 = rotation.rotate(p4, thetax_rad, axis='x')

    # TRANSLATING THE SQUARE SHEET INTO THE SCREEN SPACE
    point1 = transform.worldSpaceTransform(p1, SCREENWIDTH, SCREENHEIGHT)
    point2 = transform.worldSpaceTransform(p2, SCREENWIDTH, SCREENHEIGHT)
    point3 = transform.worldSpaceTransform(p3, SCREENWIDTH, SCREENHEIGHT)
    point4 = transform.worldSpaceTransform(p4, SCREENWIDTH, SCREENHEIGHT)

    # STORING THE POINTS TO A TUPLE SO IT CAN BE DRAWN USING pygame.draw.lines
    points = ((point1.x, point1.y), (point2.x, point2.y),
              (point2.x, point2.y), (point3.x, point3.y),
              (point3.x, point3.y), (point4.x, point4.y),
              (point4.x, point4.y), (point1.x, point1.y))

    keys = pygame.key.get_pressed()
    # ROTATE X ?
    if keys[pygame.K_SPACE]:
        thetax -= 0.005  # Decrease theta to rotate counter-clockwise

    pygame.draw.lines(D, (0, 0, 0), False, points)

    pygame.display.flip()

主要更改:

  1. 角度转换:使用 radians()thetax 从度转换为弧度,在 rotateX 函数中使用 sin(theta)cos(theta) 时确保 theta 是弧度。
  2. 简化旋转调用:在旋转时直接使用 rotate 方法来更新 Vec3 对象,而不是分别更新 xyz

结果:

按下 空格键 后,你应该看到正方形围绕 x 轴旋转,而不是平移。旋转时会围绕其中心旋转,并且图形将保持在视野内。

2024-12-03