我想在日期时间列 dtype 上合并两个数据框。日期时间列包含相似和不同的值。但我无法合并它们,以便所有唯一的日期时间行最终都存在……不常见的列中有 NA。我在第二个数据框的 date_time 列中得到了 NA。在 R 和 python 中都试过了
df=pd.merge(df_met, df_so2, how='left', on='Date_Time')
df_2<-join(so2, met_km, type="inner") df3 <- merge(so2, met_km, all = TRUE) df_4 <- merge(so2, met_km, by.x = "Date_Time", by.y = "Date_Time")
X POC Datum Date_Time Date_GMT Sample.Measurement MDL 1 2 WGS84 2015-01-01 3:00 01/01/2015 09:00 2.3 0.2 2 2 WGS84 2015-01-01 4:00 01/01/2015 10:00 2.5 0.2 3 2 WGS84 2015-01-01 5:00 01/01/2015 11:00 2.1 0.2 4 2 WGS84 2015-01-01 6:00 01/01/2015 12:00 2.3 0.2 5 2 WGS84 2015-01-01 7:00 01/01/2015 13:00 1.1 0.2
X Date_Time air_temp_set_1 dew_point_temperature_set_1 1 2015-01-01 1:00 35.6 35.6 2 2015-01-01 2:00 35.6 35.6 3 2015-01-01 3:00 35.6 35.6 4 2015-01-01 4:00 33.8 33.8 5 2015-01-01 5:00 33.2 33.2 6 2015-01-01 6:00 33.8 33.8 7 2015-01-01 7:00 33.8 33.8
X POC Datum Date_Time Date_GMT Sample.Measurement MDL 1 1.0 2 WGS84 2015-01-01 3:00 01/01/2015 09:00 2.3 0.2 2 2.0 2 WGS84 2015-01-01 4:00 01/01/2015 10:00 2.5 0.2 3 NaN NaN 2015-01-01 1:00 NaN NaN NaN 4 NaN NaN 2015-01-01 2:00 NaN NaN NaN
pandas.DataFrame.merge
outer
Expected Output
parameter
sort=True
date
df_exp = pd.merge(df_so2, df_met, on='Date_Time', how='outer') X_x POC Datum Date_Time Date_GMT Sample.Measurement MDL X_y air_temp_set_1 dew_point_temperature_set_1 1.0 2.0 WGS84 2015-01-01 3:00 01/01/2015 09:00 2.3 0.2 3 35.6 35.6 2.0 2.0 WGS84 2015-01-01 4:00 01/01/2015 10:00 2.5 0.2 4 33.8 33.8 3.0 2.0 WGS84 2015-01-01 5:00 01/01/2015 11:00 2.1 0.2 5 33.2 33.2 4.0 2.0 WGS84 2015-01-01 6:00 01/01/2015 12:00 2.3 0.2 6 33.8 33.8 5.0 2.0 WGS84 2015-01-01 7:00 01/01/2015 13:00 1.1 0.2 7 33.8 33.8 NaN NaN NaN 2015-01-01 1:00 NaN NaN NaN 1 35.6 35.6 NaN NaN NaN 2015-01-01 2:00 NaN NaN NaN 2 35.6 35.6
df_met
df_exp.drop(columns=['X_y', 'air_temp_set_1', 'dew_point_temperature_set_1'], inplace=True) df_exp.rename(columns={'X_x': 'X'}, inplace=True) X POC Datum Date_Time Date_GMT Sample.Measurement MDL 1.0 2.0 WGS84 2015-01-01 3:00 01/01/2015 09:00 2.3 0.2 2.0 2.0 WGS84 2015-01-01 4:00 01/01/2015 10:00 2.5 0.2 3.0 2.0 WGS84 2015-01-01 5:00 01/01/2015 11:00 2.1 0.2 4.0 2.0 WGS84 2015-01-01 6:00 01/01/2015 12:00 2.3 0.2 5.0 2.0 WGS84 2015-01-01 7:00 01/01/2015 13:00 1.1 0.2 NaN NaN NaN 2015-01-01 1:00 NaN NaN NaN NaN NaN NaN 2015-01-01 2:00 NaN NaN NaN