一尘不染

写入关闭的本地TCP套接字不会失败

linux

我的插座似乎有问题。在下面,您将看到一些分叉服务器和客户端的代码。服务器打开一个TCP套接字,客户端连接到它,然后关闭它。睡眠用于协调时间。在客户端close()之后,服务器尝试将write()写入其自己的TCP连接的末端。根据write(2)手册页,这
应该 给我一个SIGPIPE和一个EPIPE errno。但是,我看不到。从服务器的角度来看,写入本地关闭的套接字 成功
,并且没有EPIPE,我看不到服务器应如何检测到客户端已关闭套接字。

在客户端关闭其端与尝试写入的服务器之间的间隙中,对netstat的调用将显示该连接处于CLOSE_WAIT /
FIN_WAIT2状态,因此服务器端一定可以拒绝写入。

作为参考,我使用的是Debian Squeeze,uname -r是2.6.39-bpo.2-amd64。

这里发生了什么?


#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <netinet/tcp.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <fcntl.h>

#include <netdb.h>

#define SERVER_ADDRESS "127.0.0.7"
#define SERVER_PORT 4777


#define myfail_if( test, msg ) do { if((test)){ fprintf(stderr, msg "\n"); exit(1); } } while (0)
#define myfail_unless( test, msg ) myfail_if( !(test), msg )

int connect_client( char *addr, int actual_port )
{
    int client_fd;

    struct addrinfo hint;
    struct addrinfo *ailist, *aip;


    memset( &hint, '\0', sizeof( struct addrinfo ) );
    hint.ai_socktype = SOCK_STREAM;

    myfail_if( getaddrinfo( addr, NULL, &hint, &ailist ) != 0, "getaddrinfo failed." );

    int connected = 0;
    for( aip = ailist; aip; aip = aip->ai_next ) {
        ((struct sockaddr_in *)aip->ai_addr)->sin_port = htons( actual_port );
        client_fd = socket( aip->ai_family, aip->ai_socktype, aip->ai_protocol );

        if( client_fd == -1) { continue; }
        if( connect( client_fd, aip->ai_addr, aip->ai_addrlen) == 0 ) {
            connected = 1;
            break;
        }
        close( client_fd );
    }

    freeaddrinfo( ailist );

    myfail_unless( connected, "Didn't connect." );
    return client_fd;
}


void client(){
    sleep(1);
    int client_fd = connect_client( SERVER_ADDRESS, SERVER_PORT );

    printf("Client closing its fd... ");
    myfail_unless( 0 == close( client_fd ), "close failed" );
    fprintf(stdout, "Client exiting.\n");
    exit(0);
}


int init_server( struct sockaddr * saddr, socklen_t saddr_len )
{
    int sock_fd;

    sock_fd = socket( saddr->sa_family, SOCK_STREAM, 0 );
    if ( sock_fd < 0 ){
        return sock_fd;
    }

    myfail_unless( bind( sock_fd, saddr, saddr_len ) == 0, "Failed to bind." );
    return sock_fd;
}

int start_server( const char * addr, int port )
{
    struct addrinfo *ailist, *aip;
    struct addrinfo hint;
    int sock_fd;

    memset( &hint, '\0', sizeof( struct addrinfo ) );
    hint.ai_socktype = SOCK_STREAM;
    myfail_if( getaddrinfo( addr, NULL, &hint, &ailist ) != 0, "getaddrinfo failed." );

    for( aip = ailist; aip; aip = aip->ai_next ){
        ((struct sockaddr_in *)aip->ai_addr)->sin_port = htons( port );
        sock_fd = init_server( aip->ai_addr, aip->ai_addrlen );
        if ( sock_fd > 0 ){
            break;
        } 
    }
    freeaddrinfo( aip );

    myfail_unless( listen( sock_fd, 2 ) == 0, "Failed to listen" );
    return sock_fd;
}


int server_accept( int server_fd )
{
    printf("Accepting\n");
    int client_fd = accept( server_fd, NULL, NULL );
    myfail_unless( client_fd > 0, "Failed to accept" );
    return client_fd;
}


void server() {
    int server_fd = start_server(SERVER_ADDRESS, SERVER_PORT);
    int client_fd = server_accept( server_fd );

    printf("Server sleeping\n");
    sleep(60);

    printf( "Errno before: %s\n", strerror( errno ) );
    printf( "Write result: %d\n", write( client_fd, "123", 3 ) );
    printf( "Errno after:  %s\n", strerror( errno ) );

    close( client_fd );
}


int main(void){
    pid_t clientpid;
    pid_t serverpid;

    clientpid = fork();

    if ( clientpid == 0 ) {
        client();
    } else {
        serverpid = fork();

        if ( serverpid == 0 ) {
            server();
        }
        else {
            int clientstatus;
            int serverstatus;

            waitpid( clientpid, &clientstatus, 0 );
            waitpid( serverpid, &serverstatus, 0 );

            printf( "Client status is %d, server status is %d\n", 
                    clientstatus, serverstatus );
        }
    }

    return 0;
}

阅读 192

收藏
2020-06-02

共1个答案

一尘不染

这是Linux手册页关于write和的内容EPIPE

   EPIPE  fd is connected to a pipe or socket whose reading end is closed.
          When this happens the writing process will also receive  a  SIG-
          PIPE  signal.  (Thus, the write return value is seen only if the
          program catches, blocks or ignores this signal.)

当Linux使用a pipe或a时socketpair,它可以并且将检查对的 读取结束 ,这两个程序将演示:

void test_socketpair () {
    int pair[2];
    socketpair(PF_LOCAL, SOCK_STREAM, 0, pair);
    close(pair[0]);
    if (send(pair[1], "a", 1, MSG_NOSIGNAL) < 0) perror("send");
}

void test_pipe () {
    int pair[2];
    pipe(pair);
    close(pair[0]);
    signal(SIGPIPE, SIG_IGN);
    if (write(pair[1], "a", 1) < 0) perror("send");
    signal(SIGPIPE, SIG_DFL);
}

Linux之所以能够做到这一点,是因为内核对管道或连接对的另一端具有先天的知识。但是,使用时connect,有关套接字的状态由协议栈维护。您的测试演示了这种行为,但是下面是一个在单个线程中完成所有操作的程序,类似于上面的两个测试:

int a_sock = socket(PF_INET, SOCK_STREAM, 0);
const int one = 1;
setsockopt(a_sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
struct sockaddr_in a_sin = {0};
a_sin.sin_port = htons(4321);
a_sin.sin_family = AF_INET;
a_sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
bind(a_sock, (struct sockaddr *)&a_sin, sizeof(a_sin));
listen(a_sock, 1);
int c_sock = socket(PF_INET, SOCK_STREAM, 0);
fcntl(c_sock, F_SETFL, fcntl(c_sock, F_GETFL, 0)|O_NONBLOCK);
connect(c_sock, (struct sockaddr *)&a_sin, sizeof(a_sin));
fcntl(c_sock, F_SETFL, fcntl(c_sock, F_GETFL, 0)&~O_NONBLOCK);
struct sockaddr_in s_sin = {0};
socklen_t s_sinlen = sizeof(s_sin);
int s_sock = accept(a_sock, (struct sockaddr *)&s_sin, &s_sinlen);
struct pollfd c_pfd = { c_sock, POLLOUT, 0 };
if (poll(&c_pfd, 1, -1) != 1) perror("poll");
int erropt = -1;
socklen_t errlen = sizeof(erropt);
getsockopt(c_sock, SOL_SOCKET, SO_ERROR, &erropt, &errlen);
if (erropt != 0) { errno = erropt; perror("connect"); }
puts("P|Recv-Q|Send-Q|Local Address|Foreign Address|State|");
char cmd[256];
snprintf(cmd, sizeof(cmd), "netstat -tn | grep ':%hu ' | sed 's/  */|/g'",
         ntohs(s_sin.sin_port));
puts("before close on client"); system(cmd);
close(c_sock);
puts("after close on client"); system(cmd);
if (send(s_sock, "a", 1, MSG_NOSIGNAL) < 0) perror("send");
puts("after send on server"); system(cmd);
puts("end of test");
sleep(5);

如果运行上面的程序,您将获得类似于以下的输出:

P|Recv-Q|Send-Q|Local Address|Foreign Address|State|
before close on client
tcp|0|0|127.0.0.1:35790|127.0.0.1:4321|ESTABLISHED|
tcp|0|0|127.0.0.1:4321|127.0.0.1:35790|ESTABLISHED|
after close on client
tcp|0|0|127.0.0.1:35790|127.0.0.1:4321|FIN_WAIT2|
tcp|1|0|127.0.0.1:4321|127.0.0.1:35790|CLOSE_WAIT|
after send on server
end of test

这表明write套接字转换到CLOSED状态花费了一个时间。为了找出发生这种情况的原因,事务的TCP转储可能很有用:

16:45:28 127.0.0.1 > 127.0.0.1
 .809578 IP .35790 > .4321: S 1062313174:1062313174(0) win 32792 <mss 16396,sackOK,timestamp 3915671437 0,nop,wscale 7>
 .809715 IP .4321 > .35790: S 1068622806:1068622806(0) ack 1062313175 win 32768 <mss 16396,sackOK,timestamp 3915671437 3915671437,nop,wscale 7>
 .809583 IP .35790 > .4321: . ack 1 win 257 <nop,nop,timestamp 3915671437 3915671437>
 .840364 IP .35790 > .4321: F 1:1(0) ack 1 win 257 <nop,nop,timestamp 3915671468 3915671437>
 .841170 IP .4321 > .35790: . ack 2 win 256 <nop,nop,timestamp 3915671469 3915671468>
 .865792 IP .4321 > .35790: P 1:2(1) ack 2 win 256 <nop,nop,timestamp 3915671493 3915671468>
 .865809 IP .35790 > .4321: R 1062313176:1062313176(0) win 0

前三行代表三向握手。第四行是FIN客户端发送到服务器的数据包,第五行是ACK来自服务器的确认收据的数据包。第六行是服务器尝试将PUSH设置了标志的1字节数据发送到客户端。最后一行是客户端RESET数据包,该数据包将释放连接的TCP状态,这就是为什么第三条netstat命令在上述测试中未产生任何输出的原因。

因此,服务器直到尝试向其发送一些数据后才知道客户端将重置连接。进行重置的原因是因为客户端调用了close,而不是其他名称。

服务器无法确定客户端实际发出了什么系统调用,它只能遵循TCP状态。例如,我们可以将close呼叫替换为shutdown

//close(c_sock);
shutdown(c_sock, SHUT_WR);

shutdown和之间的区别在于,closeshutdown仅控制连接状态,同时close还控制表示套接字的 文件描述符
的状态。一个shutdown不会close是套接字。

shutdown更改后的输出将有所不同:

P|Recv-Q|Send-Q|Local Address|Foreign Address|State|
before close on client
tcp|0|0|127.0.0.1:4321|127.0.0.1:56355|ESTABLISHED|
tcp|0|0|127.0.0.1:56355|127.0.0.1:4321|ESTABLISHED|
after close on client
tcp|1|0|127.0.0.1:4321|127.0.0.1:56355|CLOSE_WAIT|
tcp|0|0|127.0.0.1:56355|127.0.0.1:4321|FIN_WAIT2|
after send on server
tcp|1|0|127.0.0.1:4321|127.0.0.1:56355|CLOSE_WAIT|
tcp|1|0|127.0.0.1:56355|127.0.0.1:4321|FIN_WAIT2|
end of test

TCP转储也将显示不同的内容:

17:09:18 127.0.0.1 > 127.0.0.1
 .722520 IP .56355 > .4321: S 2558095134:2558095134(0) win 32792 <mss 16396,sackOK,timestamp 3917101399 0,nop,wscale 7>
 .722594 IP .4321 > .56355: S 2563862019:2563862019(0) ack 2558095135 win 32768 <mss 16396,sackOK,timestamp 3917101399 3917101399,nop,wscale 7>
 .722615 IP .56355 > .4321: . ack 1 win 257 <nop,nop,timestamp 3917101399 3917101399>
 .748838 IP .56355 > .4321: F 1:1(0) ack 1 win 257 <nop,nop,timestamp 3917101425 3917101399>
 .748956 IP .4321 > .56355: . ack 2 win 256 <nop,nop,timestamp 3917101426 3917101425>
 .764894 IP .4321 > .56355: P 1:2(1) ack 2 win 256 <nop,nop,timestamp 3917101442 3917101425>
 .764903 IP .56355 > .4321: . ack 2 win 257 <nop,nop,timestamp 3917101442 3917101442>
17:09:23
 .786921 IP .56355 > .4321: R 2:2(0) ack 2 win 257 <nop,nop,timestamp 3917106464 3917101442>

请注意,最后一次重置是在最后一个ACK数据包之后5秒钟进行的。此重置是由于程序未正确关闭套接字而关闭的。ACK重置之前从客户端到服务器的数据包与以前不同。这表明客户端未使用close。在TCP中,该FIN指示实际上表示没有更多数据要发送。但是,由于TCP连接是双向的,因此接收FIN假定的服务器的客户端仍可以接收数据。在上述情况下,客户端实际上确实接受数据。

无论客户端是使用close还是SHUT_WR发出FIN,在两种情况下,都可以FIN通过在服务器套接字上轮询可读事件来检测的到来。如果在调用read结果之后是0,那么您知道FIN到达了,那么您可以使用该信息来做您想做的事情。

struct pollfd s_pfd = { s_sock, POLLIN|POLLOUT, 0 };
if (poll(&s_pfd, 1, -1) != 1) perror("poll");
if (s_pfd.revents|POLLIN) {
    char c;
    int r;
    while ((r = recv(s_sock, &c, 1, MSG_DONTWAIT)) == 1) {}
    if (r == 0) { /*...FIN received...*/ }
    else if (errno == EAGAIN) { /*...no more data to read for now...*/ }
    else { /*...some other error...*/ perror("recv"); }
}

现在,它是平凡的事实,如果服务器的问题SHUT_WRshutdown它试图做一个写之前,它实际上将得到EPIPE错误。

shutdown(s_sock, SHUT_WR);
if (send(s_sock, "a", 1, MSG_NOSIGNAL) < 0) perror("send");

相反,如果您希望客户端指示立即重置服务器,则可以通过启用linger选项(0在调用之前有一个较长的超时时间)来强制大多数TCP堆栈上执行此操作close

struct linger lo = { 1, 0 };
setsockopt(c_sock, SOL_SOCKET, SO_LINGER, &lo, sizeof(lo));
close(c_sock);

通过上述更改,程序的输出变为:

P|Recv-Q|Send-Q|Local Address|Foreign Address|State|
before close on client
tcp|0|0|127.0.0.1:35043|127.0.0.1:4321|ESTABLISHED|
tcp|0|0|127.0.0.1:4321|127.0.0.1:35043|ESTABLISHED|
after close on client
send: Connection reset by peer
after send on server
end of test

send这种情况下获取的即时错误,但它不是EPIPE,它是ECONNRESET。TCP转储也反映了这一点:

17:44:21 127.0.0.1 > 127.0.0.1
 .662163 IP .35043 > .4321: S 498617888:498617888(0) win 32792 <mss 16396,sackOK,timestamp 3919204411 0,nop,wscale 7>
 .662176 IP .4321 > .35043: S 497680435:497680435(0) ack 498617889 win 32768 <mss 16396,sackOK,timestamp 3919204411 3919204411,nop,wscale 7>
 .662184 IP .35043 > .4321: . ack 1 win 257 <nop,nop,timestamp 3919204411 3919204411>
 .691207 IP .35043 > .4321: R 1:1(0) ack 1 win 257 <nop,nop,timestamp 3919204440 3919204411>

RESET数据包在三向握手完成后立即发送。但是,使用此选项有其危险。如果到达时另一端的套接字缓冲区中有未读的数据,则RESET该数据将被清除,从而导致数据丢失。RESET通常在请求/响应样式协议中使用强制发送。当请求的发送者收到对请求的整个响应时,可以知道不会丢失任何数据。然后,对于请求发送方来说,RESET在连接上强制发送a是安全的。

2020-06-02