一尘不染

Spark上的Redis:任务不可序列化

redis

我们在Spark上使用Redis来缓存键值对,这是代码:

import com.redis.RedisClient
val r = new RedisClient("192.168.1.101", 6379)
val perhit = perhitFile.map(x => {
    val arr = x.split(" ")
    val readId = arr(0).toInt
    val refId = arr(1).toInt
    val start = arr(2).toInt
    val end = arr(3).toInt
    val refStr = r.hmget("refStr", refId).get(refId).split(",")(1)
    val readStr = r.hmget("readStr", readId).get(readId)
    val realend = if(end > refStr.length - 1) refStr.length - 1 else end
    val refOneStr = refStr.substring(start, realend)
      (readStr, refOneStr, refId, start, realend, readId)
 })

但是编译器给了我这样的反馈:

Exception in thread "main" org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:1242)
    at org.apache.spark.rdd.RDD.map(RDD.scala:270)
    at com.ynu.App$.main(App.scala:511)
    at com.ynu.App.main(App.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: com.redis.RedisClient
    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)
    at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
    at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
    at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)
    at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
    at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
    at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164)
    ... 12 more

有人可以告诉我如何序列化从Redis获得的数据。非常感谢。


阅读 675

收藏
2020-06-20

共1个答案

一尘不染

在Spark中,RDDs(如此map处)上的函数被序列化并发送给执行程序进行处理。这意味着这些操作中包含的所有元素都应该可序列化。

Redis连接不可序列化,因为它打开了到目标DB的TCP连接,该TCP连接已绑定到创建它的机器。

解决方案是在本地执行上下文中的执行器上创建那些连接。做到这一点的方法很少。我想到的两个是:

  • rdd.mapPartitions:可让您一次处理整个分区,从而分摊创建连接的成本)
  • 单例连接管理器:每个执行者创建一次连接

mapPartitions 仅需对程序结构进行少量更改即可轻松实现:

val perhit = perhitFile.mapPartitions{partition => 
    val r = new RedisClient("192.168.1.101", 6379) // create the connection in the context of the mapPartition operation
    val res = partition.map{ x =>
        ...
        val refStr = r.hmget(...) // use r to process the local data
    }
    r.close // take care of resources
    res
}

可以使用持有对连接的延迟引用的对象对单例连接管理器进行建模(注意:可变引用也将起作用)。

object RedisConnection extends Serializable {
   lazy val conn: RedisClient = new RedisClient("192.168.1.101", 6379)
}

然后可以使用该对象实例化每个辅助JVM的1个连接,并用作Serializable操作闭包中的对象。

val perhit = perhitFile.map{x => 
    val param = f(x)
    val refStr = RedisConnection.conn.hmget(...) // use RedisConnection to get a connection to the local data
    }
}

使用单例对象的优点是开销较小,因为连接仅由JVM创建一次(而不是每个RDD分区1个)

还有一些缺点:

  • 连接的清理很棘手(关机挂钩/计时器)
  • 必须确保共享资源的线程安全

(*)代码用于说明目的。未经编译或测试。

2020-06-20