一尘不染

ElasticSearch:使用edge_ngram和模糊性进行部分/完全评分

elasticsearch

在ElasticSearch中,我尝试使用带有模糊性的edge_ngram获得正确的评分。我希望精确匹配具有最高的分数,而子匹配具有较低的分数。以下是我的设置和评分结果。

settings: {
          number_of_shards: 1,
          analysis: {
             filter: {
                ngram_filter: {
                   type: 'edge_ngram',
                   min_gram: 2,
                   max_gram: 20
                }
             },
             analyzer: {
                ngram_analyzer: {
                   type: 'custom',
                   tokenizer: 'standard',
                   filter: [
                      'lowercase',
                      'ngram_filter'
                   ]
                }
             }
          }
       },
    mappings: [{
          name: 'voter',
          _all: {
                'type': 'string',
                'index_analyzer': 'ngram_analyzer',
                'search_analyzer': 'standard'
             },
             properties: {
                last: {
                   type: 'string',
                   required : true,
                   include_in_all: true,
                   term_vector: 'yes',
                   index_analyzer: 'ngram_analyzer',
                   search_analyzer: 'standard'
                },
                first: {
                   type: 'string',
                   required : true,
                   include_in_all: true,
                   term_vector: 'yes',
                   index_analyzer: 'ngram_analyzer',
                   search_analyzer: 'standard'
                },

             }

       }]

在执行了名字为“ Michael”的POST之后,我进行了如下查询,并更改了“ Michael”,“ Michae”,“ Micha”,“ Mich”,“
Mic”和“ Mi”。

GET voter/voter/_search
{
 "query": {
    "match": {
      "_all": {
        "query": "Michael",
        "fuzziness": 2,
        "prefix_length": 1
      }
    }
  }
}

我的成绩是:

-"Michael": 0.19535106
-"Michae": 0.2242768
-"Micha": 0.24513611
-"Mich": 0.22340237
-"Mic": 0.21408978
-"Mi": 0.15438235

如您所见,得分结果没有达到预期。我希望“ Michael”的得分最高,而“ Mi”的得分最低

任何帮助,将不胜感激!


阅读 567

收藏
2020-06-22

共1个答案

一尘不染

解决此问题的一种方法是像这样在映射中添加文本的原始版本

                   last: {
                       type: 'string',
                       required : true,
                       include_in_all: true,
                       term_vector: 'yes',
                       index_analyzer: 'ngram_analyzer',
                       search_analyzer: 'standard',
                       "fields": {
                            "raw": { 
                               "type":  "string"  <--- index with standard analyzer
                              }
                          }
                    },
                    first: {
                       type: 'string',
                       required : true,
                       include_in_all: true,
                       term_vector: 'yes',
                       index_analyzer: 'ngram_analyzer',
                       search_analyzer: 'standard',
                       "fields": {
                            "raw": { 
                               "type":  "string"  <--- index with standard analyzer
                              }
                          }
                    },

你也可以把它 精确index : not_analyzed

然后您可以像这样查询

{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "_all": {
              "query": "Michael",
              "fuzziness": 2,
              "prefix_length": 1
            }
          }
        },
        {
          "match": {
            "last.raw": {
              "query": "Michael",
              "boost": 5
            }
          }
        },
        {
          "match": {
            "first.raw": {
              "query": "Michael",
              "boost": 5
            }
          }
        }
      ]
    }
  }
}

匹配更多条款的文档得分更高。您可以boost根据需要指定。

2020-06-22