我正在构建一个小的Flask应用程序,该应用程序在后台使用卷积神经网络对用户上传的图像进行预测。如果我这样加载它,它将起作用:
@app.route("/uploader", methods=["GET","POST"]) def get_image(): if request.method == 'POST': f = request.files['file'] sfname = 'static/'+str(secure_filename(f.filename)) f.save(sfname) clf = catdog.classifier() return render_template('result.html', pred = clf.predict(sfname), imgpath = sfname)
但是,这要求在用户添加图像之后加载分类器(clf)。这需要一段时间,因为它需要根据一个pickle文件为200层以上的神经网络设置所有权重。
我想要做的是在生成应用程序时加载所有权重。为此,我尝试了此操作(为HTML模板/导入/应用启动切出了不相关的代码):
# put model into memory on spawn clf = catdog.classifier() # Initialize the app app = flask.Flask(__name__) @app.route("/uploader", methods=["GET","POST"]) def get_image(): if request.method == 'POST': f = request.files['file'] sfname = 'static/'+str(secure_filename(f.filename)) f.save(sfname) return render_template('result.html', pred = clf.predict(sfname), imgpath = sfname)
当我这样做时,我得到了这个回溯(跳过所有烧瓶特定的跟踪在顶部):
File "/Users/zachariahmiller/Documents/Metis/test_area/flask_catdog/flask_backend.py", line 26, in get_image return render_template('result.html', pred = clf.predict(sfname), imgpath = sfname) File "/Users/zachariahmiller/Documents/Metis/test_area/flask_catdog/catdog.py", line 56, in predict prediction = self.model.predict(img_to_predict, batch_size=1, verbose=1) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/keras/engine/training.py", line 1569, in predict self._make_predict_function() File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/keras/engine/training.py", line 1037, in _make_predict_function **kwargs) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 2095, in function return Function(inputs, outputs, updates=updates) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/keras/backend/tensorflow_backend.py", line 2049, in __init__ with tf.control_dependencies(self.outputs): File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3583, in control_dependencies return get_default_graph().control_dependencies(control_inputs) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3314, in control_dependencies c = self.as_graph_element(c) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2405, in as_graph_element return self._as_graph_element_locked(obj, allow_tensor, allow_operation) File "/Users/zachariahmiller/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2484, in _as_graph_element_locked raise ValueError("Tensor %s is not an element of this graph." % obj) ValueError: Tensor Tensor("dense_2/Softmax:0", shape=(?, 2), dtype=float32) is not an element of this graph.
我不确定为什么将特定调用之外的分类器作为全局对象加载到应用程序会导致失败。它应该在内存中,并且我已经看到其他人使用SKLearn分类器执行此操作的示例。关于为什么会导致此错误的任何想法?
我正在将我的python服务器作为threaded = True运行。删除它,让我的工作
app.run(host='0.0.0.0', port=5000, threaded=True)
---->
app.run(host='0.0.0.0', port=5000)
调试似乎对我没有任何影响
尝试debug=False在flask中进行设置。
debug=False
在多次失败的张量流保存/加载尝试后为我工作。
对我来说,在我的flask应用程序的底部看起来像这样:
if __name__ == '__main__': app.run(debug=False)