一尘不染

Python-如何用pandasDataFrame中的先前值替换NaN?

python

假设我有一个带有NaNs 的DataFrame :

>>> import pandas as pd
>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df
    0   1   2
0   1   2   3
1   4 NaN NaN
2 NaN NaN   9

我需要做的是用上方的同一列中NaN的第一个非NaN值替换每个值。假设第一行永远不会包含NaN。因此,对于前面的示例,结果将是

   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

我可以遍历整个DataFrame的逐列,逐元素并直接设置值,但是是否有一种简单的方法(最佳无循环方法)来实现这一点?


阅读 2426

收藏
2020-02-16

共1个答案

一尘不染

你可以fillnaDataFrame上使用该方法,并将该方法指定为ffill(正向填充):

>>> df = pd.DataFrame([[1, 2, 3], [4, None, None], [None, None, 9]])
>>> df.fillna(method='ffill')
   0  1  2
0  1  2  3
1  4  2  3
2  4  2  9

这个方法

将上一个有效观察结果传播到下一个有效观察结果

相反,还有一种bfill方法。

此方法不会就地修改DataFrame-你需要将返回的DataFrame重新绑定到变量,或者指定inplace=True

df.fillna(method='ffill', inplace=True)
2020-02-16