一尘不染

Python-pandas中map,applymap和apply方法之间的区别

python

你能否通过基本示例告诉我何时使用这些矢量化方法?

我看到这map是一种Series方法,而其余都是DataFrame方法。我糊涂了约applyapplymap,虽然方法。为什么我们有两种将函数应用于DataFrame的方法?同样,简单的例子可以很好地说明用法!


阅读 672

收藏
2020-02-16

共1个答案

一尘不染

另一个常见的操作是将一维数组上的函数应用于每一列或每一行。DataFrame的apply方法正是这样做的:

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [117]: frame
Out[117]: 
               b         d         e
Utah   -0.029638  1.081563  1.280300
Ohio    0.647747  0.831136 -1.549481
Texas   0.513416 -0.884417  0.195343
Oregon -0.485454 -0.477388 -0.309548

In [118]: f = lambda x: x.max() - x.min()

In [119]: frame.apply(f)
Out[119]: 
b    1.133201
d    1.965980
e    2.829781
dtype: float64

许多最常见的数组统计信息(例如sum和mean)都是DataFrame方法,因此不必使用apply。

也可以使用基于元素的Python函数。假设你要根据帧中的每个浮点值来计算格式化的字符串。你可以使用applymap做到这一点:

In [120]: format = lambda x: '%.2f' % x

In [121]: frame.applymap(format)
Out[121]: 
            b      d      e
Utah    -0.03   1.08   1.28
Ohio     0.65   0.83  -1.55
Texas    0.51  -0.88   0.20
Oregon  -0.49  -0.48  -0.31

之所以使用applymap作为名称,是因为Series具有用于应用逐元素函数的map方法:

In [122]: frame['e'].map(format)
Out[122]: 
Utah       1.28
Ohio      -1.55
Texas      0.20
Oregon    -0.31
Name: e, dtype: object

总结起来,apply在DataFrame的行/列基础上工作,在DataFrame applymap上按map元素工作,在Series上按元素工作。

2020-02-16