我给了N个数字a [1..N]以及其他2个整数L和H。如何计算满足i <j <k和L <= a [i] +的元组(i,j,k)的数目a [j] + a [k] <=H。
1 <= T <= 100 1 <= N <= 1000 1 <= L <= H <= 1000000 1 <= a[i] <= 1000000
PS:比N2logn需要更好的解决方案
解
由于我的C / C 有点生锈,并且这主要是算法问题,因此我将用伪代码编写(大多数情况下,正确的C / C 带有一些算法,可能需要一段时间才能写出来)。
如果您至少有sizeof(int)* 10 ^ 12字节的可用内存和时间,则可以使用时间复杂度为O(n ^ 2 * log(n))的此算法。
// Sort the N numbers using your favorite, efficient sorting method. (Quicksort, mergesort, etc.) [O(n*log(n))]. int[] b = sort(a) int[] c = int[length(b)^2]; // Compute the sums of all of the numbers (O(n^2)) for(int i = 0; i < length(b); i++){ for (int j = i; j < length(b); j++){ c[i*length(b)+j] = b[i]+b[j]; } } // Sort the sum list (you can do the sorts in-place if you are comfortable) - O(n^2*log(n)) d = sort(c); // For each number in your list, grab the list of of sums so that L<=num+sum<=H O(n) // Use binary search to find the lower, upper bounds O(log(n)) // (Total complexity for this part: O(n*log(n)) int total = 0; for (int i = 0; i < b; i++){ int min_index = binary_search(L-b[i]); // search for largest number <= L-b[i] int max_index = binary_search(H-b[i]); // search for smallest number >= H-b[i] total += max_index - min_index + 1; // NOTE: This does not handle edge cases like not finding any sums that work } return total;