一尘不染

如何在两个排序数组的并集中找到第k个最大元素?

algorithm

我需要k在两个排序的数组中找到最大的元素,但要有所不同。

该算法假设k<=max(m,n),索引在时出错k>max(m,n)。在我的问题中,我知道这将一直存在k>(m+n)/2,因此k>min(m,n)我需要稍微改变JulesOlléon的答案…我只是看不到哪一点:〜

我在第3页找到了此链接,但是那里存在bug(实施后,它不会返回正确的答案)

我知道一个快速的解决方法是将两个数组都乘以-1,然后取最小的那个联合的k,然后再将答案乘以-1,但这会使代码不可读。

不是 功课。

好的,我想我误会了尼尔的答案或其他原因,因为这就是我给“他”的意思

#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <vector>

#include <Eigen/Dense>
using namespace Eigen;
using Eigen::VectorXf;
using Eigen::VectorXi;

float getNth(VectorXf& v1,VectorXf& v2,int& n){
        int step=(n/4),i1=(n/2),i2=(n-i1);
        while(!(v2(i2)>=v1(i1-1) && v1(i1)>v2(i2-1))){                   
            if(v1(i1-1)>=v2(i2-1)){
                i1-=step;
                i2+=step;
            } else {
                i1+=step;
                i2-=step;
            }
            step/=2;
            if(!step) step=1;
        }
        if(v1(i1-1)>=v2(i2-1))
            return v1(i1-1);
            else
            return v2(i2-1);    
}
int main(){  
    int p,q,n,k,l;
    float sol;
    std:: cout << "enter p " << std::endl;
    std::cin >> p; 
    std:: cout << "enter q " << std::endl;
    std::cin >> q;
    n=p+q;
    std:: cout  << " enter k larger than " << std::min(p,q) << " and smaller than " << n-1 << std::endl;
    std::cin >> k;

    k=n-k-1;

    srand(time(NULL));
    VectorXf v1=VectorXf::Random(p);
    srand(time(NULL));
    VectorXf v2=VectorXf::Random(q);
    VectorXf v3(n);
    v3 << v1, v2;
    std::sort(v3.data(),v3.data()+v3.size(),std::greater<float>()); //std::greater<float>()
    std::sort(v1.data(),v1.data()+v1.size(),std::greater<float>());
    std::sort(v2.data(),v2.data()+v2.size(),std::greater<float>());

    sol=getNth(v1,v2,k);
    std::cout << sol << std::endl;
    std::cout << v3(k) <<   std::endl;
    return 0;  
}

这就是我得到的:

enter p 
12
enter q 
32
 enter k larger than 12 and smaller than 43
13
nthoftwo: /Desktop/work/p1/geqw4/vi3/out/sp/ccode/eigen/Eigen/src/Core/DenseCoeffsBase.h:409: Eigen::DenseCoeffsBase<Derived, 1>::Scalar& Eigen::DenseCoeffsBase<Derived, 1>::operator()(Eigen::DenseCoeffsBase<Derived, 1>::Index) [with Derived = Eigen::Matrix<float, -0x00000000000000001, 1>, Eigen::DenseCoeffsBase<Derived, 1>::Scalar = float, Eigen::DenseCoeffsBase<Derived, 1>::Index = long int]: Assertion `index >= 0 && index < size()' failed.
Aborted (core dumped)

如果您不熟悉本征:错误是由以下原因引起的索引超出范围错误 getNth(v1,v2,k)

编辑:

这是对JF Sebastian下面简单而优雅的解决方案的一个很小的修改-所有错误都是我的,但似乎可行。目的是使用原始索引(即,我不确定尼尔的想法必不可少)。

#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <cassert>
#include <iterator>

#include <Eigen/Dense>
using namespace Eigen;
using Eigen::VectorXf;
using Eigen::VectorXi;

template<class RandomIterator,class Compare>
typename std::iterator_traits<RandomIterator>::value_type
nsmallest(RandomIterator firsta,RandomIterator lasta,RandomIterator firstb,RandomIterator lastb,size_t n,Compare less) {
  assert(n<static_cast<size_t>((lasta-firsta)+(lastb-firstb)));
  if (firsta==lasta) return *(firstb+n);
  if (firstb==lastb) return *(firsta+n);

  size_t mida=(lasta-firsta)/2;
  size_t midb=(lastb-firstb)/2;
  if ((mida+midb)<n)
    return less(*(firstb+midb),*(firsta+mida))?
      nsmallest(firsta,lasta,firstb+midb+1,lastb,n-(midb+1),less):
      nsmallest(firsta+mida+1,lasta,firstb,lastb,n-(mida+1),less);
  else
    return less(*(firstb+midb),*(firsta+mida))?
      nsmallest(firsta,firsta+mida,firstb,lastb,n,less):
      nsmallest(firsta,lasta,firstb,firstb+midb,n,less);
}
int main(){  
    int p,q,n,k,l;
    float sol;
    std:: cout << "enter p " << std::endl;
    std::cin >> p; 
    std:: cout << "enter q " << std::endl;
    std::cin >> q;
    n=p+q;
    std:: cout  << " enter k larger than " << std::min(p,q) << " and smaller than " << n-1 << std::endl;
    std::cin >> k;

    srand(time(NULL));
    VectorXf v1=VectorXf::Random(p);
    srand(time(NULL));
    VectorXf v2=VectorXf::Random(q);
    VectorXf v3(n);
    v3 << v1, v2;
    std::sort(v3.data(),v3.data()+v3.size()); 
    std::sort(v1.data(),v1.data()+v1.size());
    std::sort(v2.data(),v2.data()+v2.size());

    sol=nsmallest(v1.data(),v1.data()+v1.size(),v2.data(),v2.data()+v2.size(),k,std::less<float>());
//if it works, these two should return the same.
    std::cout << sol << std::endl;  
    std::cout << v3(k) << std::endl;
    return 0;  
}

阅读 254

收藏
2020-07-28

共1个答案

一尘不染

从您的评论中我了解到,您想找到给定2个反向排序数组的第k个最小值,例如for a={5,4,3}, b={2,1,0};k=1,预期结果就是0最小值-第一个最小值(表示k从算起1)。

给定的nsmallest()函数可用于排序数组并接受自定义比较器,您可以:

#include <functional> // greater<>
#include <iostream>

#define SIZE(a) (sizeof(a) / sizeof(*a))

int main() {
  int a[] = {5,4,3};
  int b[] = {2,1,0};
  int k = 1; // find minimum value, the 1st smallest value in a,b

  int i = k - 1; // convert to zero-based indexing
  int v = nsmallest(a, a + SIZE(a), b, b + SIZE(b),
            SIZE(a)+SIZE(b)-1-i, std::greater<int>());
  std::cout << v << std::endl; // -> 0
  return v;
}

我已经使用@Neil的建议来修复索引和@lambdapilgrim对于算法的答案:

#include <cassert>
#include <iterator>

template<class RandomIterator, class Compare>
typename std::iterator_traits<RandomIterator>::value_type
nsmallest(RandomIterator firsta, RandomIterator lasta,
          RandomIterator firstb, RandomIterator lastb,
          size_t n,
          Compare less) {
  assert(n < static_cast<size_t>((lasta - firsta) + (lastb - firstb)));
  if (firsta == lasta) return *(firstb + n);
  if (firstb == lastb) return *(firsta + n);

  size_t mida = (lasta - firsta) / 2;
  size_t midb = (lastb - firstb) / 2;
  if ((mida + midb) < n)
    return less(*(firstb + midb), *(firsta + mida)) ?
      nsmallest(firsta, lasta, firstb + midb + 1, lastb, n - (midb + 1), less) :
      nsmallest(firsta + mida + 1, lasta, firstb, lastb, n - (mida + 1), less);
  else
    return less(*(firstb + midb), *(firsta + mida)) ?
      nsmallest(firsta, firsta + mida, firstb, lastb, n, less) :
      nsmallest(firsta, lasta, firstb, firstb + midb, n, less);
}
2020-07-28