一尘不染

查找给定两个字符串的所有公共子字符串

algorithm

我遇到了一个问题声明,找到了 给定两个子字符串之间所有公共子字符串,因此 在每种情况下都必须打印最长的子字符串。问题陈述如下:

编写程序以查找两个给定字符串之间的公共子字符串。但是,不要包括较长的公共子字符串中包含的子字符串。

例如,给定输入字符串eatsleepnightxyzeatsleepabcxyz,结果应为:

  • eatsleep(由于**eatsleep** nightxyz **eatsleep** abcxyz
  • xyz(由于)eatsleepnight **xyz** eatsleepabc **xyz**
  • a(由于)e **a** tsleepnightxyz eatsleep **a** bcxyz
  • t(由于)eatsleepnigh **t** xyz ea **t** sleepabcxyz

但是,结果集应 包括e从 ,因为这两个s的已经包含在上面提到的。但也不应该包括,,等,因为这些也都被覆盖。**e** atsleepnightxyz eatsl **e** epabcxyz``e``eatsleep``ea``eat``ats``eatsleep

在这种情况下,您不必使用String实用程序方法,例如:contains,indexOf,StringTokenizer,split和replace。

我的算法如下:我从蛮力开始,当我提高基本理解时将转向更优化的解决方案。

 For String S1:
     Find all the substrings of S1 of all the lengths
     While doing so: Check if it is also a substring of 
     S2.

尝试找出我的方法的时间复杂性。

设两个给定的字符串为n1-String和n2-String

  1. S1的子字符串数显然为n1(n1 + 1)/ 2。
  2. 但是我们必须找到S1的子串的平均长度。
  3. 假设是m。我们将分别找到m。
  4. 检查m-String是否为n-String的子字符串的时间复杂度为O(n * m)。
  5. 现在,我们检查每个m-String是S2的子字符串,它是n2-String。
  6. 正如我们在上面看到的,这是一个O(n 2 m)算法。
  7. 整个算法所需的时间为
  8. Tn =(S1中的子字符串数)*(字符比较过程的平均子字符串长度时间)
  9. 通过执行某些计算,我得出的结论是时间复杂度为O(n 3 m 2)
  10. 现在,我们的工作是根据n1查找m。

尝试根据n1查找m。

T n =(n)(1)+(n-1)(2)+(n-2)(3)+ ..... +(2)(n-1)+(1)(n)
其中T n是所有子串的长度之和。

平均值将是该总和除以产生的子字符串总数。

这只是一个求和除法问题,其解如下O(n)

因此…

我的算法的运行时间为O(n ^ 5)。

考虑到这一点,我编写了以下代码:

 package pack.common.substrings;

 import java.util.ArrayList;
 import java.util.LinkedHashSet;
 import java.util.List;
 import java.util.Set;

 public class FindCommon2 {
    public static final Set<String> commonSubstrings = new      LinkedHashSet<String>();

 public static void main(String[] args) {
    printCommonSubstrings("neerajisgreat", "neerajisnotgreat");
    System.out.println(commonSubstrings);
}

 public static void printCommonSubstrings(String s1, String s2) {
    for (int i = 0; i < s1.length();) {
        List<String> list = new ArrayList<String>();
        for (int j = i; j < s1.length(); j++) {
            String subStr = s1.substring(i, j + 1);
            if (isSubstring(subStr, s2)) {
                list.add(subStr);
            }
        }
        if (!list.isEmpty()) {
            String s = list.get(list.size() - 1);
            commonSubstrings.add(s);
            i += s.length();
        }
    }
 }

 public static boolean isSubstring(String s1, String s2) {
    boolean isSubstring = true;
    int strLen = s2.length();
    int strToCheckLen = s1.length();
    if (strToCheckLen > strLen) {
        isSubstring = false;
    } else {
        for (int i = 0; i <= (strLen - strToCheckLen); i++) {
            int index = i;
            int startingIndex = i;
            for (int j = 0; j < strToCheckLen; j++) {
                if (!(s1.charAt(j) == s2.charAt(index))) {
                    break;
                } else {
                    index++;
                }
            }
            if ((index - startingIndex) < strToCheckLen) {
                isSubstring = false;
            } else {
                isSubstring = true;
                break;
            }
        }
    }
    return isSubstring;
 }
}

我的代码说明:

 printCommonSubstrings: Finds all the substrings of S1 and 
                        checks if it is also a substring of 
                        S2.
 isSubstring : As the name suggests, it checks if the given string 
               is a substring of the other string.

问题:鉴于输入

  S1 = “neerajisgreat”;
  S2 = “neerajisnotgreat”
  S3 = “rajeatneerajisnotgreat”

在S1和S2的情况下,输出应该是:neerajisgreat ,但在S1和S3的情况下,输出应该是:
neerajisrajgreateat但还是我得到neerajisgreat作为输出。我需要弄清楚这一点。

我应该如何设计我的代码?


阅读 213

收藏
2020-07-28

共1个答案

一尘不染

对于任务,使用适当的算法而不是蛮力的方法会更好。Wikipedia描述了最长的常见子字符串问题的两种常见解决方案:后缀树动态编程

动态编程解决方案需要O( nm )时间和O( nm )空间。对于最长的公共子字符串,这几乎是Wikipedia伪代码的直接Java翻译:

public static Set<String> longestCommonSubstrings(String s, String t) {
    int[][] table = new int[s.length()][t.length()];
    int longest = 0;
    Set<String> result = new HashSet<>();

    for (int i = 0; i < s.length(); i++) {
        for (int j = 0; j < t.length(); j++) {
            if (s.charAt(i) != t.charAt(j)) {
                continue;
            }

            table[i][j] = (i == 0 || j == 0) ? 1
                                             : 1 + table[i - 1][j - 1];
            if (table[i][j] > longest) {
                longest = table[i][j];
                result.clear();
            }
            if (table[i][j] == longest) {
                result.add(s.substring(i - longest + 1, i + 1));
            }
        }
    }
    return result;
}

现在,您需要所有常见的子字符串,而不仅仅是最长的。您可以增强此算法以包括较短的结果。让我们检查一下表中的示例输入eatsleepnightxyzeatsleepabcxyz

  e a t s l e e p a b c x y z
e 1 0 0 0 0 1 1 0 0 0 0 0 0 0
a 0 2 0 0 0 0 0 0 1 0 0 0 0 0
t 0 0 3 0 0 0 0 0 0 0 0 0 0 0
s 0 0 0 4 0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 5 0 0 0 0 0 0 0 0 0
e 1 0 0 0 0 6 1 0 0 0 0 0 0 0
e 1 0 0 0 0 1 7 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 8 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x 0 0 0 0 0 0 0 0 0 0 0 1 0 0
y 0 0 0 0 0 0 0 0 0 0 0 0 2 0
z 0 0 0 0 0 0 0 0 0 0 0 0 0 3
  • eatsleep结果是显而易见的:那就是12345678在左上角的斜条纹。
  • xyz结果是123在右下角的对角线。
  • a结果由表示1靠近顶部(第二行,第九列)。
  • t结果是由指定的1左下角附近。

那其他1的左侧,顶部和旁边的S 67?那些不算在内,因为它们出现在12345678对角线形成的矩形内-
换句话说,它们已经被覆盖eatsleep

我建议做一遍,只做一张桌子。然后,进行第二遍处理,从右下角向后迭代,以收集结果集。

2020-07-28