一尘不染

CUDA-中值滤波器的实现无法产生预期的结果

algorithm

我一直在尝试为Wiki文章中提出的中值过滤器实现算法:http
:
//en.wikipedia.org/wiki/Median_filter#2D_median_filter_pseudo_code

据我所知,我知道我所实施的是正确的。但是,当我查看结果时,似乎无法获得与median blurOpenCV中的函数所产生的输出相似的输出。目前,我不关心通过使用共享内存或纹理内存来加快代码速度。我只想让事情先行。我输入图像的大小是1024 x 256像素。

我究竟做错了什么? 我的代码中是否存在线程泄漏?我知道我应该使用共享内存来阻止全局读取,因为当前,我正在从全局内存中大量读取数据。

http://snag.gy/OkXzP.jpg-第一个图像是输入,第二个图像是我的算法结果,第三个是openCV
medianblur函数结果。理想情况下,我希望算法输出与该medianblur函数相同的结果。

这是我编写的所有代码:

内核实现

#include "cuda.h"
#include "cuda_runtime_api.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
#include "highgui.h"
//#include "opencv2/core/imgproc.hpp"
//#include "opencv2/core/gpu.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

// includes, project

#include "cufft.h"
#include "cublas_v2.h"
#include "CUDA_wrapper.h"   // contains only func_prototype for function take_input()


// define the threads and grids for CUDA
#define BLOCK_ROWS 32
#define BLOCK_COLS 16

// define kernel dimensions
#define KERNEL_DIMENSION 3
#define MEDIAN_DIMENSION 3
#define MEDIAN_LENGTH 9

// this is the error checking part for CUDA
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
   if (code != cudaSuccess) 
   {
      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
      if (abort) exit(code);
   }
}

// create two vars for the rows and cols of the image
    int d_imgRows;
    int d_imgCols;

__global__ void FilterKernel (unsigned short *d_input_img, unsigned short *d_output_img, int d_iRows, int d_iCols)

{  
    unsigned short window[BLOCK_ROWS*BLOCK_COLS][KERNEL_DIMENSION*KERNEL_DIMENSION];

    unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;

    unsigned int tid = threadIdx.y*blockDim.y+threadIdx.x;

    if(x>d_iCols || y>d_iRows)
        return;

    window[tid][0]= (y==0||x==0) ? 0.0f : d_input_img[(y-1)*d_iCols+(x-1)];
    window[tid][1]= (y==0) ? 0.0f : d_input_img[(y-1)*d_iCols+x]; 
    window[tid][2]= (y==0||x==d_iCols-1) ? 0.0f : d_input_img[(y-1)*d_iCols+(x+1)];
    window[tid][3]= (x==0) ? 0.0f : d_input_img[y*d_iCols+(x-1)];
    window[tid][4]= d_input_img[y*d_iCols+x];
    window[tid][5]= (x==d_iCols-1) ? 0.0f : d_input_img[y*d_iCols+(x+1)];
    window[tid][6]= (y==d_iRows-1||x==0) ? 0.0f : d_input_img[(y+1)*d_iCols+(x-1)];
    window[tid][7]= (y==d_iRows-1) ? 0.0f : d_input_img[(y+1)*d_iCols+x];
    window[tid][8]= (y==d_iRows-1||x==d_iCols-1) ? 0.0f : d_input_img[(y+1)*d_iCols+(x+1)];

   __syncthreads();

    // Order elements 
    for (unsigned int j=0; j<9; ++j)
    {
        // Find position of minimum element
        int min=j;
        for (unsigned int l=j+1; l<9; ++l)
            if (window[tid][l] < window[tid][min])
                min=l;

        // Put found minimum element in its place
        const unsigned char temp=window[tid][j];
        window[tid][j]=window[tid][min];
        window[tid][min]=temp;

        __syncthreads();
    }

    d_output_img[y*d_iCols + x] = (window[tid][4]);

}

void take_input(const cv::Mat& input, const cv::Mat& output)
{

    unsigned short *device_input; 
    unsigned short *device_output;

    size_t d_ipimgSize = input.step * input.rows;
    size_t d_opimgSize = output.step * output.rows;

    gpuErrchk( cudaMalloc( (void**) &device_input, d_ipimgSize) ); 
    gpuErrchk( cudaMalloc( (void**) &device_output, d_opimgSize) );

    gpuErrchk( cudaMemcpy(device_input, input.data, d_ipimgSize, cudaMemcpyHostToDevice) );

    dim3 Threads(BLOCK_ROWS, BLOCK_COLS);  // 512 threads per block
    dim3 Blocks((input.cols + Threads.x - 1)/Threads.x, (input.rows + Threads.y - 1)/Threads.y);

    //int check = (input.cols + Threads.x - 1)/Threads.x;
    //printf( "blockx %d", check);

    FilterKernel <<< Blocks, Threads >>> (device_input, device_output, input.rows, input.cols);

    gpuErrchk(cudaDeviceSynchronize());

    gpuErrchk( cudaMemcpy(output.data, device_output, d_opimgSize, cudaMemcpyDeviceToHost) );

    //printf( "num_rows_cuda %d", num_rows);
    //printf("\n");

    gpuErrchk(cudaFree(device_input));
    gpuErrchk(cudaFree(device_output));

}

主功能

#pragma once
#include<iostream>
#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/gpu/gpu.hpp>

#include <CUDA_wrapper.h>

using std::cout;
using std::endl;

int main()
{

    //Read the image from harddisk, into a cv::Mat
    //IplImage *img=cvLoadImage("image.jpg");
    //cv::Mat input(img);
    cv::Mat input = cv::imread("C:/Users/OCT/Documents/Visual Studio 2008/Projects/MedianFilter/MedianFilter/pic1.bmp",CV_LOAD_IMAGE_GRAYSCALE);

    //IplImage* input = cvLoadImage("G:/Research/CUDA/Trials/OCTFilter/Debug/pic1.bmp");
    if(input.empty())
    {
        cout<<"Image Not Found"<<endl;
        getchar();
        return -1;
    }

    cv::Mat output(input.rows,input.cols,CV_8UC1);

    // store the different details of the input image like img_data, rows, cols in variables 
    int Rows = input.rows;
    int Cols = input.cols;
    unsigned char* Data = input.data;

    cout<<"image rows "<<Rows<<endl;
    cout<<"image cols "<<Cols<<endl;
    cout<<"\n"<<endl;
    cout<<"data "<<(int)Data<<endl;
    cv::waitKey(0);

    // call the device function to take the image as input
    take_input(input, output);

    cv::Mat dest;

    medianBlur ( input, dest, 3 );

    //Show the input and output
    cv::imshow("Input",input);
    cv::imshow("Output",output);
    cv::imshow("Median blur",dest);

    //Wait for key press
    cv::waitKey();
}

阅读 206

收藏
2020-07-28

共1个答案

一尘不染

我相信您的“内核实现”文件中存在各种错误和不必要的复杂性。

您可能会遇到以下好运:

$ cat t376.cu
#include <stdlib.h>
#include <stdio.h>

#define DCOLS 1024
#define DROWS 256

typedef struct {
  size_t step;
  size_t rows;
  size_t cols;
  unsigned char *data;
} mat;


// define the threads and grids for CUDA
#define BLOCK_ROWS 32
#define BLOCK_COLS 16

// define kernel dimensions
#define MEDIAN_LENGTH 9

// this is the error checking part for CUDA
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
   if (code != cudaSuccess)
   {
      fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
      if (abort) exit(code);
   }
}


__global__ void FilterKernel (unsigned char *d_input_img, unsigned char *d_output_img, int d_iRows, int d_iCols)

{

    unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
    unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
    unsigned char window[MEDIAN_LENGTH];

    if(col>=d_iCols || row>=d_iRows)
        return;

    window[0]= (row==0||col==0) ? 0 :                 d_input_img[(row-1)*d_iCols+(col-1)];
    window[1]= (row==0) ? 0 :                         d_input_img[(row-1)*d_iCols+col];
    window[2]= (row==0||col==d_iCols-1) ? 0 :         d_input_img[(row-1)*d_iCols+(col+1)];
    window[3]= (col==0) ? 0 :                         d_input_img[row*d_iCols+(col-1)];
    window[4]=                                        d_input_img[row*d_iCols+col];
    window[5]= (col==d_iCols-1) ? 0 :                 d_input_img[row*d_iCols+(col+1)];
    window[6]= (row==d_iRows-1||col==0) ? 0 :         d_input_img[(row+1)*d_iCols+(col-1)];
    window[7]= (row==d_iRows-1) ? 0 :                 d_input_img[(row+1)*d_iCols+col];
    window[8]= (row==d_iRows-1||col==d_iCols-1) ? 0 : d_input_img[(row+1)*d_iCols+(col+1)];

    // Order elements
    for (unsigned int j=0; j<5; ++j)
    {
        // Find position of minimum element
        unsigned char temp = window[j];
        unsigned int  idx  = j;
        for (unsigned int l=j+1; l<9; ++l)
            if (window[l] < temp){ idx=l; temp = window[l];}
        // Put found minimum element in its place
        window[idx] = window[j];
        window[j] = temp;
    }

    d_output_img[row*d_iCols + col] = (window[4]);

}

void take_input(const mat& input, const mat& output)
{

    unsigned char *device_input;
    unsigned char *device_output;

    size_t d_ipimgSize = input.step * input.rows;
    size_t d_opimgSize = output.step * output.rows;

    gpuErrchk( cudaMalloc( (void**) &device_input, d_ipimgSize) );
    gpuErrchk( cudaMalloc( (void**) &device_output, d_opimgSize) );

    gpuErrchk( cudaMemcpy(device_input, input.data, d_ipimgSize, cudaMemcpyHostToDevice) );

    dim3 Threads(BLOCK_COLS, BLOCK_ROWS);  // 512 threads per block
    dim3 Blocks((input.cols + Threads.x - 1)/Threads.x, (input.rows + Threads.y - 1)/Threads.y);

    //int check = (input.cols + Threads.x - 1)/Threads.x;
    //printf( "blockx %d", check);

    FilterKernel <<< Blocks, Threads >>> (device_input, device_output, input.rows, input.cols);
    gpuErrchk(cudaDeviceSynchronize());
    gpuErrchk(cudaGetLastError());

    gpuErrchk( cudaMemcpy(output.data, device_output, d_opimgSize, cudaMemcpyDeviceToHost) );

    //printf( "num_rows_cuda %d", num_rows);
    //printf("\n");

    gpuErrchk(cudaFree(device_input));
    gpuErrchk(cudaFree(device_output));

}

int main(){
  mat input_im, output_im;
  input_im.rows  = DROWS;
  input_im.cols  = DCOLS;
  input_im.step  = input_im.cols;
  input_im.data  = (unsigned char *)malloc(input_im.step*input_im.rows);
  output_im.rows = DROWS;
  output_im.cols = DCOLS;
  output_im.step = input_im.cols;
  output_im.data = (unsigned char *)malloc(output_im.step*output_im.rows);

  for (int i = 0; i < DCOLS*DROWS; i++) {
    output_im.data[i] = 0;
    input_im.data[i] = 0;
    int temp = (i%DCOLS);
    if (temp == 5) input_im.data[i] = 20;
    if ((temp > 5) && (temp < 15)) input_im.data[i] = 40;
    if (temp == 15) input_im.data[i] = 20;
    }

  take_input(input_im, output_im);
  for (int i = 2*DCOLS; i < DCOLS*(DROWS-2); i++)
    if (input_im.data[i] != output_im.data[i]) {printf("mismatch at %d, input: %d, output: %d\n", i, (int)input_im.data[i], (int)output_im.data[i]); return 1;}
  printf("Success\n");
  return 0;
}


$ nvcc -o t376 t376.cu
$ ./t376
Success
$

一些注意事项:

  1. 对于已经在代码中注入的简单案例,我已经对此进行了测试(不使用OpenCV)。
  2. 您对的使用window不必要地复杂。请注意,按照这种方式, 每个线程 都将实例化其自己的本地副本,该副本window独立于其他线程,并且对其他线程不可见。(也许您打算在这里使用共享内存?但是我离题了。)
  3. 您的排序例程已损坏。我将其修改为我认为可以使用的版本。
  4. unsigned char整个替换了像素数据类型
  5. xy被混淆,所以我把它们改成rowcol这似乎不易混淆。
  6. 稍微改进了内核错误检查
  7. 有许多优化方法。但是,您明智的目标是首先使某些东西正常工作。因此,除了指出共享内存的两个常规区域以重用window数据以及改进的排序例程之外,我不会在优化上花费很多时间。
  8. 您需要针对openCV进行适当的修改
  9. 请注意,如果将其修改为DROWS = 1024和DCOLS = 256,它将仍然有效。

编辑: 阅读您的意见,事情仍然没有工作后,它出现在您的OpenCV的代码不正确设置为单声道8位灰度(CV_8UC1)图像同时并行 ,以
你的take_input功能。问题出自此行:

cv::Mat input = cv::imread("C:/Users/OCT/Documents/Visual Studio 2008/Projects/MedianFilter/MedianFilter/pic1.bmp",1);

1传递给的参数imread指定RGB图像负载。请参阅未读文档

Now we call the imread function which loads the image name specified by the first argument (argv[1]). The second argument specifies the format in what we want the image. This may be:

CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present)
CV_LOAD_IMAGE_GRAYSCALE ( 0) loads the image as an intensity one
CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format

如果您指定CV_LOAD_IMAGE_GRAYSCALE而不是,则可能会更好1

否则,您应该研究如何加载图像,以使其最终成为一种CV_8UC1类型。

但是,如果你传递inputtake_input原样,它肯定是行不通的。

2020-07-28