一尘不染

子集总和问题

algorithm

最近,我对子集和问题感兴趣,该问题正在超集中找到零和子集。我在SO上找到了一些解决方案,此外,我遇到了使用动态编程方法的特定解决方案。根据他的定性描述,我用python翻译了他的解决方案。我正在尝试针对较大的列表进行优化,这会占用很多内存。有人可以推荐优化或其他技术来解决此特定问题吗?这是我在python中的尝试:

import random
from time import time
from itertools import product

time0 = time()

# create a zero matrix of size a (row), b(col)
def create_zero_matrix(a,b):
    return [[0]*b for x in xrange(a)]

# generate a list of size num with random integers with an upper and lower bound
def random_ints(num, lower=-1000, upper=1000):
    return [random.randrange(lower,upper+1) for i in range(num)]

# split a list up into N and P where N be the sum of the negative values and P the sum of the positive values.
# 0 does not count because of additive identity
def split_sum(A):
    N_list = []
    P_list = []
    for x in A:
        if x < 0:
            N_list.append(x)
        elif x > 0:
            P_list.append(x)
    return [sum(N_list), sum(P_list)]

# since the column indexes are in the range from 0 to P - N
# we would like to retrieve them based on the index in the range N to P
# n := row, m := col
def get_element(table, n, m, N):
    if n < 0:
        return 0
    try:
        return table[n][m - N]
    except:
        return 0

# same definition as above
def set_element(table, n, m, N, value):
    table[n][m - N] = value

# input array
#A = [1, -3, 2, 4]
A = random_ints(200)

[N, P] = split_sum(A)

# create a zero matrix of size m (row) by n (col)
#
# m := the number of elements in A
# n := P - N + 1 (by definition N <= s <= P)
#
# each element in the matrix will be a value of either 0 (false) or 1 (true)
m = len(A)
n = P - N + 1;
table = create_zero_matrix(m, n)

# set first element in index (0, A[0]) to be true
# Definition: Q(1,s) := (x1 == s). Note that index starts at 0 instead of 1.
set_element(table, 0, A[0], N, 1)

# iterate through each table element
#for i in xrange(1, m): #row
#    for s in xrange(N, P + 1): #col
for i, s in product(xrange(1, m), xrange(N, P + 1)):
    if get_element(table, i - 1, s, N) or A[i] == s or get_element(table, i - 1, s - A[i], N):
        #set_element(table, i, s, N, 1)
        table[i][s - N] = 1

# find zero-sum subset solution
s = 0
solution = []
for i in reversed(xrange(0, m)):
    if get_element(table, i - 1, s, N) == 0 and get_element(table, i, s, N) == 1:
        s = s - A[i]
        solution.append(A[i])

print "Solution: ",solution

time1 = time()

print "Time execution: ", time1 - time0

阅读 228

收藏
2020-07-28

共1个答案

一尘不染

我不确定您的解决方案是准确的还是PTA(多时近似)。

但是,正如有人指出的那样,这个问题确实是NP-Complete。

意思是,每个已知(精确)算法在输入大小上都有指数时间行为。

意思是,如果您可以在0.01纳秒内处理1次操作,那么对于59个元素的列表,它将需要:

2^59 ops -->     2^59     seconds -->     2^26      years -->      1 year
            --------------           ---------------
            10.000.000.000           3600 x 24 x 365

您可以找到启发式方法,这仅使您有机会在多项式时间内找到精确解。

另一方面,如果使用集合中数字值的界限将问题(仅限于另一个问题),则问题的复杂度将降低为多项式时间。但是即使这样,消耗的内存空间仍将是非常高阶的多项式。
消耗的内存将远远大于您的内存中的几GB。甚至比硬盘驱动器上的几个兆字节大得多。

(这是针对集合中元素值的边界的小值)

动态编程算法可能就是这种情况。

在我看来,构建初始化矩阵时使用的是1000的范围。

您可以尝试较小的范围。也就是说…如果您的输入始终由小值组成。

祝好运!

2020-07-28