我想通过基准评估库中某些方法的出色表现。我不需要精度-足以表明某些东西是O(1),O(logn),O(n),O(nlogn),O(n ^ 2)或更糟糕的东西。由于big-oh表示上限,因此为O(log logn)估计O(logn)并不是问题。
现在,我正在考虑找到最适合每个big-oh数据的常数乘数k(但将所有结果都放在首位),然后选择最适合的big-oh。
鉴于到目前为止的评论,我需要澄清一些事情:
n
这是我要衡量的一种示例。我有一个带有此签名的方法:
def apply(n: Int): A
给定一个n,它将返回序列的第n个元素。在给定现有实现的情况下,此方法可以具有O(1),O(logn)或O(n),并且进行较小的更改就可以使其误使用次优实现。或者,更容易地,可以得到其他 依赖 于它的方法来使用次优版本。
为了开始,您必须做几个假设。
特别地,难以与(1)一起实现(3)。因此,您可能会遇到指数级最坏情况的情况,但永远不会遇到最坏情况,因此认为您的算法比平均水平要好得多。
话虽如此,您只需要任何标准曲线拟合库即可。 Apache Commons Math具有足够的能力。然后,您可以使用要测试的所有常用术语(例如,常数,log n,n,n log n,n n,n n * n,e ^ n)创建一个函数,也可以记录数据并拟合指数,然后如果获得的指数不接近整数,则查看是否将log n进行拟合是否更好。
(更详细地说,如果你适合C*x^a的C和a,或更容易log C + a log x,你可以得到的指数a;在全共术语一次刻录方案,你会得到的权重为每个术语,所以如果你有n*n + C*n*log(n)其中C大,您还将选择该词。)
C*x^a
C
a
log C + a log x
n*n + C*n*log(n)
您将需要适当地改变大小,以便可以区分不同的情况(如果要注意日志项,可能会比较困难),并且可以安全地使用比参数更多的大小(可能超出3倍)好的,只要您总共进行至少十几次跑步)。
编辑:这是Scala代码,可以为您完成所有这些操作。与其解释每个小片段,不如让我去调查。它使用C * x ^ a fit实现上述方案,并返回((a,C),(a的下限,a的上限))。从运行几次可以看到,边界是相当保守的。单位C是秒(a无单位),但是不要 过多 地相信它,因为会产生一些循环开销(也有一些噪音)。
class TimeLord[A: ClassManifest,B: ClassManifest](setup: Int => A, static: Boolean = true)(run: A => B) { @annotation.tailrec final def exceed(time: Double, size: Int, step: Int => Int = _*2, first: Int = 1): (Int,Double) = { var i = 0 val elapsed = 1e-9 * { if (static) { val a = setup(size) var b: B = null.asInstanceOf[B] val t0 = System.nanoTime var i = 0 while (i < first) { b = run(a) i += 1 } System.nanoTime - t0 } else { val starts = if (static) { val a = setup(size); Array.fill(first)(a) } else Array.fill(first)(setup(size)) val answers = new Array[B](first) val t0 = System.nanoTime var i = 0 while (i < first) { answers(i) = run(starts(i)) i += 1 } System.nanoTime - t0 } } if (time > elapsed) { val second = step(first) if (second <= first) throw new IllegalArgumentException("Iteration size increase failed: %d to %d".format(first,second)) else exceed(time, size, step, second) } else (first, elapsed) } def multibench(smallest: Int, largest: Int, time: Double, n: Int, m: Int = 1) = { if (m < 1 || n < 1 || largest < smallest || (n>1 && largest==smallest)) throw new IllegalArgumentException("Poor choice of sizes") val frac = (largest.toDouble)/smallest (0 until n).map(x => (smallest*math.pow(frac,x/((n-1).toDouble))).toInt).map{ i => val (k,dt) = exceed(time,i) if (m==1) i -> Array(dt/k) else { i -> ( (dt/k) +: (1 until m).map(_ => exceed(time,i,first=k)).map{ case (j,dt2) => dt2/j }.toArray ) } }.foldLeft(Vector[(Int,Array[Double])]()){ (acc,x) => if (acc.length==0 || acc.last._1 != x._1) acc :+ x else acc.dropRight(1) :+ (x._1, acc.last._2 ++ x._2) } } def alpha(data: Seq[(Int,Array[Double])]) = { // Use Theil-Sen estimator for calculation of straight-line fit for exponent // Assume timing relationship is t(n) = A*n^alpha val dat = data.map{ case (i,ad) => math.log(i) -> ad.map(x => math.log(i) -> math.log(x)) } val slopes = (for { i <- dat.indices j <- ((i+1) until dat.length) (pi,px) <- dat(i)._2 (qi,qx) <- dat(j)._2 } yield (qx - px)/(qi - pi)).sorted val mbest = slopes(slopes.length/2) val mp05 = slopes(slopes.length/20) val mp95 = slopes(slopes.length-(1+slopes.length/20)) val intercepts = dat.flatMap{ case (i,a) => a.map{ case (li,lx) => lx - li*mbest } }.sorted val bbest = intercepts(intercepts.length/2) ((mbest,math.exp(bbest)),(mp05,mp95)) } }
请注意,假设使用了静态初始化数据,并且与您正在运行的任何数据相比,该multibench方法的运行时间大约为sqrt(2) n m * ,则该方法运行所需的时间。以下是一些示例,这些示例选择的参数需要大约15秒才能运行:
multibench
val tl1 = new TimeLord(x => List.range(0,x))(_.sum) // Should be linear // Try list sizes 100 to 10000, with each run taking at least 0.1s; // use 10 different sizes and 10 repeats of each size scala> tl1.alpha( tl1.multibench(100,10000,0.1,10,10) ) res0: ((Double, Double), (Double, Double)) = ((1.0075537890632216,7.061397125245351E-9),(0.8763463348353099,1.102663784225697)) val longList = List.range(0,100000) val tl2 = new TimeLord(x=>x)(longList.apply) // Again, should be linear scala> tl2.alpha( tl2.multibench(100,10000,0.1,10,10) ) res1: ((Double, Double), (Double, Double)) = ((1.4534378213477026,1.1325696181862922E-10),(0.969955396265306,1.8294175293676322)) // 1.45?! That's not linear. Maybe the short ones are cached? scala> tl2.alpha( tl2.multibench(9000,90000,0.1,100,1) ) res2: ((Double, Double), (Double, Double)) = ((0.9973235607566956,1.9214696731124573E-9),(0.9486294398193154,1.0365312207345019)) // Let's try some sorting val tl3 = new TimeLord(x=>Vector.fill(x)(util.Random.nextInt))(_.sorted) scala> tl3.alpha( tl3.multibench(100,10000,0.1,10,10) ) res3: ((Double, Double), (Double, Double)) = ((1.1713142886974603,3.882658025586512E-8),(1.0521099621639414,1.3392622111121666)) // Note the log(n) term comes out as a fractional power // (which will decrease as the sizes increase) // Maybe sort some arrays? // This may take longer to run because we have to recreate the (mutable) array each time val tl4 = new TimeLord(x=>Array.fill(x)(util.Random.nextInt), false)(java.util.Arrays.sort) scala> tl4.alpha( tl4.multibench(100,10000,0.1,10,10) ) res4: ((Double, Double), (Double, Double)) = ((1.1216172965292541,2.2206198821180513E-8),(1.0929414090177318,1.1543697719880128)) // Let's time something slow def kube(n: Int) = (for (i <- 1 to n; j <- 1 to n; k <- 1 to n) yield 1).sum val tl5 = new TimeLord(x=>x)(kube) scala> tl5.alpha( tl5.multibench(10,100,0.1,10,10) ) res5: ((Double, Double), (Double, Double)) = ((2.8456382116915484,1.0433534274508799E-7),(2.6416659356198617,2.999094292838751)) // Okay, we're a little short of 3; there's constant overhead on the small sizes
无论如何,对于指定的用例(正在检查以确保顺序没有变化),这可能就足够了,因为在设置测试时您可以使用一些值以确保它们提供了合理的信息。人们还可以创建探索稳定性的启发式方法,但这可能是过大了。
(顺便说一句,这里没有明确的热身步骤; Theil- Sen估算器的强大拟合功能应该使其对于合理的大型基准没有必要。这也是为什么我不使用任何其他基准测试框架的原因;它失去的任何统计信息测试的力量。)
再次编辑:如果将alpha方法替换为以下内容:
alpha
// We'll need this math @inline private[this] def sq(x: Double) = x*x final private[this] val inv_log_of_2 = 1/math.log(2) @inline private[this] def log2(x: Double) = math.log(x)*inv_log_of_2 import math.{log,exp,pow} // All the info you need to calculate a y value, e.g. y = x*m+b case class Yp(x: Double, m: Double, b: Double) {} // Estimators for data order // fx = transformation to apply to x-data before linear fitting // fy = transformation to apply to y-data before linear fitting // model = given x, slope, and intercept, calculate predicted y case class Estimator(fx: Double => Double, invfx: Double=> Double, fy: (Double,Double) => Double, model: Yp => Double) {} // C*n^alpha val alpha = Estimator(log, exp, (x,y) => log(y), p => p.b*pow(p.x,p.m)) // C*log(n)*n^alpha val logalpha = Estimator(log, exp, (x,y) =>log(y/log2(x)), p => p.b*log2(p.x)*pow(p.x,p.m)) // Use Theil-Sen estimator for calculation of straight-line fit case class Fit(slope: Double, const: Double, bounds: (Double,Double), fracrms: Double) {} def theilsen(data: Seq[(Int,Array[Double])], est: Estimator = alpha) = { // Use Theil-Sen estimator for calculation of straight-line fit for exponent // Assume timing relationship is t(n) = A*n^alpha val dat = data.map{ case (i,ad) => ad.map(x => est.fx(i) -> est.fy(i,x)) } val slopes = (for { i <- dat.indices j <- ((i+1) until dat.length) (pi,px) <- dat(i) (qi,qx) <- dat(j) } yield (qx - px)/(qi - pi)).sorted val mbest = slopes(slopes.length/2) val mp05 = slopes(slopes.length/20) val mp95 = slopes(slopes.length-(1+slopes.length/20)) val intercepts = dat.flatMap{ _.map{ case (li,lx) => lx - li*mbest } }.sorted val bbest = est.invfx(intercepts(intercepts.length/2)) val fracrms = math.sqrt(data.map{ case (x,ys) => ys.map(y => sq(1 - y/est.model(Yp(x,mbest,bbest)))).sum }.sum / data.map(_._2.length).sum) Fit(mbest, bbest, (mp05,mp95), fracrms) }
然后,当还有一个对数项时,您可以得到指数的估计值–存在误差估计值,以选择对数项是否是正确的处理方法,但这取决于您进行调用(即,我假设您将首先对此进行监督并阅读得出的数字):
val tl3 = new TimeLord(x=>Vector.fill(x)(util.Random.nextInt))(_.sorted) val timings = tl3.multibench(100,10000,0.1,10,10) // Regular n^alpha fit scala> tl3.theilsen( timings ) res20: tl3.Fit = Fit(1.1811648421030059,3.353753446942075E-8,(1.1100382697696545,1.3204652930525234),0.05927994882343982) // log(n)*n^alpha fit--note first value is closer to an integer // and last value (error) is smaller scala> tl3.theilsen( timings, tl3.logalpha ) res21: tl3.Fit = Fit(1.0369167329732445,9.211366397621766E-9,(0.9722967182484441,1.129869067913768),0.04026308919615681)
(编辑:修正了RMS计算,因此它实际上是平均值,并证明您只需要进行一次计时,然后可以尝试两种拟合。)