Java 类org.apache.hadoop.mapreduce.v2.app.job.event.JobTaskAttemptFetchFailureEvent 实例源码
项目:hadoop
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hadoop
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hadoop
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:aliyun-oss-hadoop-fs
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
String hostname = taskAttempt.container == null ? "UNKNOWN"
: taskAttempt.container.getNodeId().getHost();
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps,
hostname));
}
}
项目:aliyun-oss-hadoop-fs
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptTooManyFetchFailureEvent(mapId,
fetchfailureEvent.getReduce(), fetchfailureEvent.getHost()));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:aliyun-oss-hadoop-fs
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt, String hostname) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()}),
hostname));
}
项目:big-c
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:big-c
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:big-c
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:hadoop-2.6.0-cdh5.4.3
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hadoop-2.6.0-cdh5.4.3
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hadoop-2.6.0-cdh5.4.3
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:hadoop-plus
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hadoop-plus
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
boolean isMapFaulty =
(failureRate >= MAX_ALLOWED_FETCH_FAILURES_FRACTION);
if (fetchFailures >= MAX_FETCH_FAILURES_NOTIFICATIONS && isMapFaulty) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hadoop-plus
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:FlexMap
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:FlexMap
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:FlexMap
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:hops
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
String hostname = taskAttempt.container == null ? "UNKNOWN"
: taskAttempt.container.getNodeId().getHost();
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps,
hostname));
}
}
项目:hops
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
if (fetchFailures >= job.getMaxFetchFailuresNotifications()
&& failureRate >= job.getMaxAllowedFetchFailuresFraction()) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptTooManyFetchFailureEvent(mapId,
fetchfailureEvent.getReduce(), fetchfailureEvent.getHost()));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hops
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt, String hostname) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()}),
hostname));
}
项目:hadoop-TCP
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hadoop-TCP
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
boolean isMapFaulty =
(failureRate >= MAX_ALLOWED_FETCH_FAILURES_FRACTION);
if (fetchFailures >= MAX_FETCH_FAILURES_NOTIFICATIONS && isMapFaulty) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hadoop-TCP
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:hardfs
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hardfs
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
boolean isMapFaulty =
(failureRate >= MAX_ALLOWED_FETCH_FAILURES_FRACTION);
if (fetchFailures >= MAX_FETCH_FAILURES_NOTIFICATIONS && isMapFaulty) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hardfs
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}
项目:hadoop-on-lustre2
文件:TaskAttemptImpl.java
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
// Status update calls don't really change the state of the attempt.
TaskAttemptStatus newReportedStatus =
((TaskAttemptStatusUpdateEvent) event)
.getReportedTaskAttemptStatus();
// Now switch the information in the reportedStatus
taskAttempt.reportedStatus = newReportedStatus;
taskAttempt.reportedStatus.taskState = taskAttempt.getState();
// send event to speculator about the reported status
taskAttempt.eventHandler.handle
(new SpeculatorEvent
(taskAttempt.reportedStatus, taskAttempt.clock.getTime()));
taskAttempt.updateProgressSplits();
//if fetch failures are present, send the fetch failure event to job
//this only will happen in reduce attempt type
if (taskAttempt.reportedStatus.fetchFailedMaps != null &&
taskAttempt.reportedStatus.fetchFailedMaps.size() > 0) {
taskAttempt.eventHandler.handle(new JobTaskAttemptFetchFailureEvent(
taskAttempt.attemptId, taskAttempt.reportedStatus.fetchFailedMaps));
}
}
项目:hadoop-on-lustre2
文件:JobImpl.java
@Override
public void transition(JobImpl job, JobEvent event) {
//get number of shuffling reduces
int shufflingReduceTasks = 0;
for (TaskId taskId : job.reduceTasks) {
Task task = job.tasks.get(taskId);
if (TaskState.RUNNING.equals(task.getState())) {
for(TaskAttempt attempt : task.getAttempts().values()) {
if(attempt.getPhase() == Phase.SHUFFLE) {
shufflingReduceTasks++;
break;
}
}
}
}
JobTaskAttemptFetchFailureEvent fetchfailureEvent =
(JobTaskAttemptFetchFailureEvent) event;
for (org.apache.hadoop.mapreduce.v2.api.records.TaskAttemptId mapId :
fetchfailureEvent.getMaps()) {
Integer fetchFailures = job.fetchFailuresMapping.get(mapId);
fetchFailures = (fetchFailures == null) ? 1 : (fetchFailures+1);
job.fetchFailuresMapping.put(mapId, fetchFailures);
float failureRate = shufflingReduceTasks == 0 ? 1.0f :
(float) fetchFailures / shufflingReduceTasks;
// declare faulty if fetch-failures >= max-allowed-failures
boolean isMapFaulty =
(failureRate >= MAX_ALLOWED_FETCH_FAILURES_FRACTION);
if (fetchFailures >= MAX_FETCH_FAILURES_NOTIFICATIONS && isMapFaulty) {
LOG.info("Too many fetch-failures for output of task attempt: " +
mapId + " ... raising fetch failure to map");
job.eventHandler.handle(new TaskAttemptEvent(mapId,
TaskAttemptEventType.TA_TOO_MANY_FETCH_FAILURE));
job.fetchFailuresMapping.remove(mapId);
}
}
}
项目:hadoop-on-lustre2
文件:TestFetchFailure.java
private void sendFetchFailure(MRApp app, TaskAttempt reduceAttempt,
TaskAttempt mapAttempt) {
app.getContext().getEventHandler().handle(
new JobTaskAttemptFetchFailureEvent(
reduceAttempt.getID(),
Arrays.asList(new TaskAttemptId[] {mapAttempt.getID()})));
}