Java 类org.apache.lucene.search.similarities.BM25Similarity 实例源码

项目:DoSeR    文件:CollectiveTestApproach.java   
public CollectiveTestApproach(boolean fuzzy, boolean standardSeacher,
        boolean withDescription) {
    File indexDir = new File(entIndexDirectory);
    File indexDir1 = new File(docIndexDirectory);
    this.fuzzy = fuzzy;
    this.withDescription = withDescription;
    try {
        Directory dir = FSDirectory.open(indexDir);
        Directory dir1 = FSDirectory.open(indexDir1);
        entISearcher = new IndexSearcher(DirectoryReader.open(dir));
        entIReader = DirectoryReader.open(dir);
        docISearcher = new IndexSearcher(DirectoryReader.open(dir1));
        docIReader = DirectoryReader.open(dir1);
        if (!standardSeacher) {
            entISearcher.setSimilarity(new BM25Similarity());
        }
    } catch (IOException e) {
        e.printStackTrace();
    }
}
项目:elasticsearch_my    文件:BM25SimilarityProvider.java   
public BM25SimilarityProvider(String name, Settings settings, Settings indexSettings) {
    super(name);
    float k1 = settings.getAsFloat("k1", 1.2f);
    float b = settings.getAsFloat("b", 0.75f);
    final DeprecationLogger deprecationLogger = new DeprecationLogger(ESLoggerFactory.getLogger(getClass()));
    boolean discountOverlaps =
        settings.getAsBooleanLenientForPreEs6Indices(Version.indexCreated(indexSettings), "discount_overlaps", true, deprecationLogger);

    this.similarity = new BM25Similarity(k1, b);
    this.similarity.setDiscountOverlaps(discountOverlaps);
}
项目:Elasticsearch    文件:BM25SimilarityProvider.java   
@Inject
public BM25SimilarityProvider(@Assisted String name, @Assisted Settings settings) {
    super(name);
    float k1 = settings.getAsFloat("k1", 1.2f);
    float b = settings.getAsFloat("b", 0.75f);
    boolean discountOverlaps = settings.getAsBoolean("discount_overlaps", true);

    this.similarity = new BM25Similarity(k1, b);
    this.similarity.setDiscountOverlaps(discountOverlaps);
}
项目:searsiaserver    文件:SearchResultIndex.java   
private void openReader() throws IOException {
    this.hitsReader   = DirectoryReader.open(FSDirectory.open(this.hitsDirectory));
    this.hitsSearcher = new IndexSearcher(this.hitsReader);
    this.hitsSearcher.setSimilarity(new BM25Similarity(0.0f, 0.0f)); // simple idf scoring 
    //searcher.setSimilarity(new BM25Similarity(1.2f, 0.75f)); // k1, b
    //searcher.setSimilarity(new LMDirichletSimilarity(200f)); // mu
    //searcher.setSimilarity(new LMJelinekMercerSimilarity(0.5f)); // lambda
}
项目:elasticsearch-learning-to-rank    文件:LtrQueryTests.java   
@Before
public void setupIndex() throws IOException {
    dirUnderTest = newDirectory();
    List<Similarity> sims = Arrays.asList(
            new ClassicSimilarity(),
            new SweetSpotSimilarity(), // extends Classic
            new BM25Similarity(),
            new LMDirichletSimilarity(),
            new BooleanSimilarity(),
            new LMJelinekMercerSimilarity(0.2F),
            new AxiomaticF3LOG(0.5F, 10),
            new DFISimilarity(new IndependenceChiSquared()),
            new DFRSimilarity(new BasicModelBE(), new AfterEffectB(), new NormalizationH1()),
            new IBSimilarity(new DistributionLL(), new LambdaDF(), new NormalizationH3())
        );
    similarity = sims.get(random().nextInt(sims.size()));

    indexWriterUnderTest = new RandomIndexWriter(random(), dirUnderTest, newIndexWriterConfig().setSimilarity(similarity));
    for (int i = 0; i < docs.length; i++) {
        Document doc = new Document();
        doc.add(newStringField("id", "" + i, Field.Store.YES));
        doc.add(newField("field", docs[i], Store.YES));
        indexWriterUnderTest.addDocument(doc);
    }
    indexWriterUnderTest.commit();
    indexWriterUnderTest.forceMerge(1);
    indexWriterUnderTest.flush();


    indexReaderUnderTest = indexWriterUnderTest.getReader();
    searcherUnderTest = newSearcher(indexReaderUnderTest);
    searcherUnderTest.setSimilarity(similarity);
}
项目:LiveQA    文件:LuceneReRank.java   
public LuceneReRank(String indexLocation) throws IOException {
    dir = FSDirectory.open(new File(indexLocation));
    IndexWriterConfig iwc = new IndexWriterConfig(ANALYZER.getVersion(), ANALYZER);
    iwc.setOpenMode(IndexWriterConfig.OpenMode.APPEND);
    writer = new IndexWriter(dir, iwc);
    float K1 = (float) 1.0;
    float B = (float) 0.75;
    //NOTE: Leo mentioned that lucene's bm25 calculation could be not accurate
    similarity = new BM25Similarity(K1, B);
    fieldToLoad.add(RE_RANK_OFFSET);
}
项目:search    文件:TestBM25SimilarityFactory.java   
/** bm25 with parameters */
public void testParameters() throws Exception {
  Similarity sim = getSimilarity("text_params");
  assertEquals(BM25Similarity.class, sim.getClass());
  BM25Similarity bm25 = (BM25Similarity) sim;
  assertEquals(1.2f, bm25.getK1(), 0.01f);
  assertEquals(0.76f, bm25.getB(), 0.01f);
}
项目:biospectra    文件:Configuration.java   
@JsonIgnore
public Similarity getScoringAlgorithmObject() {
    if(this.scoringAlgorithm == null || this.scoringAlgorithm.isEmpty() || this.scoringAlgorithm.equals(DEFAULT_SCORING_ALGORITHM) || this.scoringAlgorithm.equalsIgnoreCase("tfidf") || this.scoringAlgorithm.equalsIgnoreCase("vectorspace")) {
        // vector-space model
        return new DefaultSimilarity();
    } else if(this.scoringAlgorithm.equalsIgnoreCase("bm25")) {
        // bm25 probability model
        return new BM25Similarity();
    }

    return new DefaultSimilarity();
}
项目:DoSeR    文件:LearnToRankFeatureSetupEntityBased.java   
/**
 * Feature 5: cos(BM25) * sim(t_d, q)
 * 
 * @param keyword
 * @return
 */
private Query createFeature5(EntityObject dataObject) {
    String keyword = dataObject.getText();
    BM25Similarity bm25 = new BM25Similarity();
    LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term("title",
            keyword), bm25);
    return fq;
}
项目:DoSeR    文件:LearnToRankFeatureSetupEntityBased.java   
/**
 * Feature 6: cos(Bm25) * sim(a_d, q)
 * 
 * @param dataObject
 * @return
 */
private Query createFeature6(EntityObject dataObject) {
    String keyword = dataObject.getText();
    BM25Similarity bm25 = new BM25Similarity();
    LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
            "description", keyword), bm25);
    return fq;
}
项目:DoSeR    文件:LearnToRankFeatureSetupEntityBased.java   
/**
     * Feature 7: cos(BM25) * sim(t_d, q_c)
     * 
     * @param dataObject
     * @return
     */
    private Query createFeature7(EntityObject dataObject) {
        String sentence = dataObject.getContext();
        String[] split = sentence.split(" ");
        LTRBooleanQuery bq = new LTRBooleanQuery();
        BM25Similarity bm25 = new BM25Similarity();
        for (int i = 0; i < split.length; i++) {
//          LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
//                  "title", split[i]), bm25);
             LearnToRankTermQuery fq = new LearnToRankTermQuery(new Term(
             "title", split[i]), bm25);
            bq.add(fq, Occur.SHOULD);
        }
        return bq;
    }
项目:DoSeR    文件:LearnToRankFeatureSetupEntityBased.java   
/**
     * Feature 8: cos(BM25) * sim(a_d, q_c)
     * 
     * @param dataObject
     * @return
     */
    private Query createFeature8(EntityObject dataObject) {
        String sentence = dataObject.getContext();
        String[] split = sentence.split(" ");
        LTRBooleanQuery bq = new LTRBooleanQuery();
        BM25Similarity bm25 = new BM25Similarity();
        for (int i = 0; i < split.length; i++) {
//          LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
//                  "description", usePorterStemmer(split[i])), bm25);
             LearnToRankTermQuery fq = new LearnToRankTermQuery(new Term(
             "description", split[i]), bm25);
            bq.add(fq, Occur.SHOULD);
        }
        return bq;
    }
项目:DoSeR    文件:LearnToRankFeatureSetupDocumentCentric.java   
/**
 * Feature 5: cos(BM25) * sim(t_d, q)
 * 
 * @param keyword
 * @return
 */
private Query createFeature5(EntityObject dataObject) {
    String keyword = dataObject.getText();
    BM25Similarity bm25 = new BM25Similarity();
    LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term("title",
            keyword), bm25);
    return fq;
}
项目:DoSeR    文件:LearnToRankFeatureSetupDocumentCentric.java   
/**
 * Feature 6: cos(Bm25) * sim(a_d, q)
 * 
 * @param dataObject
 * @return
 */
private Query createFeature6(EntityObject dataObject) {
    String keyword = dataObject.getText();
    BM25Similarity bm25 = new BM25Similarity();
    LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
            "abstract", keyword), bm25);
    return fq;
}
项目:DoSeR    文件:LearnToRankFeatureSetupDocumentCentric.java   
/**
 * Feature 7: cos(BM25) * sim(t_d, q_c)
 * 
 * @param dataObject
 * @return
 */
private Query createFeature7(EntityObject dataObject) {
    String sentence = dataObject.getContext();
    String[] split = sentence.split(" ");
    LTRBooleanQuery bq = new LTRBooleanQuery();
    BM25Similarity bm25 = new BM25Similarity();
    for (int i = 0; i < split.length; i++) {
        LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
                "title", split[i]), bm25);
        bq.add(fq, Occur.SHOULD);
    }
    return bq;
}
项目:DoSeR    文件:LearnToRankFeatureSetupDocumentCentric.java   
/**
 * Feature 8: cos(BM25) * sim(a_d, q_c)
 * 
 * @param dataObject
 * @return
 */
private Query createFeature8(EntityObject dataObject) {
    String sentence = dataObject.getContext();
    String[] split = sentence.split(" ");
    LTRBooleanQuery bq = new LTRBooleanQuery();
    BM25Similarity bm25 = new BM25Similarity();
    for (int i = 0; i < split.length; i++) {
        LearnToRankFuzzyQuery fq = new LearnToRankFuzzyQuery(new Term(
                "abstract", split[i]), bm25);
        bq.add(fq, Occur.SHOULD);
    }
    return bq;
}
项目:uncc2014watsonsim    文件:Lucene.java   
public Lucene(Path path) throws IOException {
    /* Setup Lucene */
       Directory dir = FSDirectory.open(path);
       // here we are using a standard analyzer, there are a lot of analyzers available to our use.
       Analyzer analyzer = new StandardAnalyzer();
       IndexWriterConfig iwc = new IndexWriterConfig(analyzer);
       //this mode by default overwrites the previous index, not a very good option in real usage
       iwc.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);
       iwc.setSimilarity(new BM25Similarity());
       index = new IndexWriter(dir, iwc);
}
项目:NYBC    文件:TestBM25SimilarityFactory.java   
/** bm25 with parameters */
public void testParameters() throws Exception {
  Similarity sim = getSimilarity("text_params");
  assertEquals(BM25Similarity.class, sim.getClass());
  BM25Similarity bm25 = (BM25Similarity) sim;
  assertEquals(1.2f, bm25.getK1(), 0.01f);
  assertEquals(0.76f, bm25.getB(), 0.01f);
}
项目:Spokendoc-Baseline    文件:SpokendocBaseline.java   
/**
 *  
 * @param propatiesPath 設定ファイル.propertiesのパス
 * @throws IOException
 */
public SpokendocBaseline(String propatiesPath) throws IOException {
    Properties conf = new Properties();
    FileInputStream fis = new FileInputStream(new File(propatiesPath));
    conf.load(fis);
    this.analyzer = new WhitespaceAnalyzer(Version.LUCENE_46);
    this.task = conf.getProperty("task");
    this.freqfilePath = conf.getProperty("freqfile");
    this.tokenizerPath = conf.getProperty("tokenizer");
    this.resultPath = conf.getProperty("result");
    this.normalization = new Boolean(conf.getProperty("normalization"));
    //メモリにインデックス保存する。テスト用
    //this.directory = new RAMDirectory();
    //MMapDirectory: 読み込みはメモリ、書き出しはファイルシステムらしい
    String indexPath = conf.getProperty("index");
    this.indexDirectory = MMapDirectory.open(new File(indexPath));

    String selectedSimilarity = conf.getProperty("similarity");
    if (selectedSimilarity.equals("LMDirichlet")) {
        float mu = Float.valueOf(conf.getProperty("mu"));
        this.similarity = new LMDirichletSimilarity(mu);
    }
    else if (selectedSimilarity.equals("BM25")) {
        float k1 = Float.valueOf(conf.getProperty("k1"));
        float b = Float.valueOf(conf.getProperty("b"));
        this.similarity = new BM25Similarity(k1, b);
    }
    else {
        this.similarity = new DefaultSimilarity();  
    }
    fis.close();
}
项目:lumongo    文件:LumongoSegment.java   
private PerFieldSimilarityWrapper getSimilarity(final QueryWithFilters queryWithFilters) {
    return new PerFieldSimilarityWrapper() {
        @Override
        public Similarity get(String name) {

            AnalyzerSettings analyzerSettings = indexConfig.getAnalyzerSettingsForIndexField(name);
            AnalyzerSettings.Similarity similarity = AnalyzerSettings.Similarity.BM25;
            if (analyzerSettings != null) {
                similarity = analyzerSettings.getSimilarity();
            }

            AnalyzerSettings.Similarity fieldSimilarityOverride = queryWithFilters.getFieldSimilarityOverride(name);
            if (fieldSimilarityOverride != null) {
                similarity = fieldSimilarityOverride;
            }

            if (AnalyzerSettings.Similarity.TFIDF.equals(similarity)) {
                return new ClassicSimilarity();
            }
            else if (AnalyzerSettings.Similarity.BM25.equals(similarity)) {
                return new BM25Similarity();
            }
            else if (AnalyzerSettings.Similarity.CONSTANT.equals(similarity)) {
                return new ConstantSimilarity();
            }
            else if (AnalyzerSettings.Similarity.TF.equals(similarity)) {
                return new TFSimilarity();
            }
            else {
                throw new RuntimeException("Unknown similarity type <" + similarity + ">");
            }
        }
    };
}
项目:search-core    文件:TestBM25SimilarityFactory.java   
/** bm25 with parameters */
public void testParameters() throws Exception {
  Similarity sim = getSimilarity("text_params");
  assertEquals(BM25Similarity.class, sim.getClass());
  BM25Similarity bm25 = (BM25Similarity) sim;
  assertEquals(1.2f, bm25.getK1(), 0.01f);
  assertEquals(0.76f, bm25.getB(), 0.01f);
}
项目:meresco-lucene    文件:LuceneSettings.java   
private static Similarity getSimilarity(JsonObject similarity) {
    switch (similarity.getString("type")) {
    case "BM25Similarity":
        JsonNumber k1 = similarity.getJsonNumber("k1");
        JsonNumber b = similarity.getJsonNumber("b");
        if (k1 != null && b != null)
            return new BM25Similarity((float) k1.doubleValue(), (float) b.doubleValue());
        return new BM25Similarity();
    case "TermFrequencySimilarity":
        return new TermFrequencySimilarity();
    }
    return null;
}
项目:meresco-lucene    文件:LuceneSettingsTest.java   
@Test
public void testBM25Similarity() throws Exception {
    LuceneSettings settings = new LuceneSettings();
    String json = "{\"similarity\": {\"type\": \"BM25Similarity\"}}";

    settings.updateSettings(new StringReader(json));
    assertEquals(BM25Similarity.class, settings.similarity.getClass());
    assertEquals(0.75f, ((BM25Similarity) settings.similarity).getB(), 0);
    assertEquals(1.2f, ((BM25Similarity) settings.similarity).getK1(), 0);
}
项目:meresco-lucene    文件:LuceneSettingsTest.java   
@Test
public void testBM25SimilarityWithKAndB() throws Exception {
    LuceneSettings settings = new LuceneSettings();
    String json = "{\"similarity\": {\"type\": \"BM25Similarity\", \"k1\": 1.0, \"b\": 0.5}}";

    settings.updateSettings(new StringReader(json));
    assertEquals(BM25Similarity.class, settings.similarity.getClass());
    assertEquals(0.5f, ((BM25Similarity) settings.similarity).getB(), 0);
    assertEquals(1.0f, ((BM25Similarity) settings.similarity).getK1(), 0);
}
项目:elasticsearch_my    文件:BlendedTermQueryTests.java   
public IndexSearcher setSimilarity(IndexSearcher searcher) {
    Similarity similarity = random().nextBoolean() ? new BM25Similarity() : new ClassicSimilarity();
    searcher.setSimilarity(similarity);
    return searcher;
}
项目:elasticsearch_my    文件:SimilarityServiceTests.java   
public void testDefaultSimilarity() {
    Settings settings = Settings.builder().build();
    IndexSettings indexSettings = IndexSettingsModule.newIndexSettings("test", settings);
    SimilarityService service = new SimilarityService(indexSettings, Collections.emptyMap());
    assertThat(service.getDefaultSimilarity(), instanceOf(BM25Similarity.class));
}
项目:elasticsearch_my    文件:SimilarityTests.java   
public void testResolveDefaultSimilarities() {
    SimilarityService similarityService = createIndex("foo").similarityService();
    assertThat(similarityService.getSimilarity("classic").get(), instanceOf(ClassicSimilarity.class));
    assertThat(similarityService.getSimilarity("BM25").get(), instanceOf(BM25Similarity.class));
    assertThat(similarityService.getSimilarity("default"), equalTo(null));
}
项目:DoSeR-Disambiguation    文件:EntityCentricAlgorithmDefault.java   
private Query createQuery(EntityDisambiguationDPO dpo,
        EntityCentricKnowledgeBase kb) {
    LearnToRankQuery query = new LearnToRankQuery();
    List<LearnToRankClause> features = new LinkedList<LearnToRankClause>();
    FuzzyLabelSimilarity fuzzyLabelSim = new FuzzyLabelSimilarity();
    DefaultSimilarity defaultSim = new DefaultSimilarity();
    BM25Similarity bm25 = new BM25Similarity();

    // Feature 1
    features.add(query.add(LuceneFeatures.queryStringFuzzy(
            dpo.getSelectedText(), "Label", fuzzyLabelSim, Occur.MUST,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature1", true));
    // Feature 2
    features.add(query.add(LuceneFeatures.queryStringTerm(
            dpo.getSelectedText(), "Description", defaultSim,
            Occur.SHOULD, DisambiguationMainService.MAXCLAUSECOUNT), "Feature2",
            false));
    // Feature 3
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Label", defaultSim, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature3", false));
    // Feature 4
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Description", defaultSim, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature4", false));
    // Feature 5
    features.add(query.add(LuceneFeatures.queryLabelFuzzy(
            dpo.getSelectedText(), "Label", bm25), "Feature5", false));
    // Feature 6
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Label", bm25, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature6", false));
    // Feature 7
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Description", bm25, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature7", false));
    // Feature 8
    features.add(query.add(
            LuceneFeatures.queryPrior(kb.getFeatureDefinition()),
            "Feature8", false));
    // Feature 9
    features.add(query.add(
            LuceneFeatures.querySensePrior(dpo.getSelectedText(),
                    kb.getFeatureDefinition()), "Feature9", false));

    features.get(0).setWeight(0.0524974f);
    features.get(1).setWeight(0.01771f);
    features.get(2).setWeight(0.0615202f);
    features.get(3).setWeight(0.0933433f);
    features.get(4).setWeight(0.0915161f);
    features.get(5).setWeight(-0.0468604f);
    features.get(6).setWeight(-0.0947746f);
    features.get(7).setWeight(0.0423863f);
    features.get(8).setWeight(0.465053f);
    return query;
}
项目:search    文件:BM25SimilarityFactory.java   
@Override
public Similarity getSimilarity() {
  BM25Similarity sim = new BM25Similarity(k1, b);
  sim.setDiscountOverlaps(discountOverlaps);
  return sim;
}
项目:search    文件:TestBM25SimilarityFactory.java   
/** bm25 with default parameters */
public void test() throws Exception {
  assertEquals(BM25Similarity.class, getSimilarity("text").getClass());
}
项目:DoSeR    文件:EntityCentricAlgorithmDefault.java   
private Query createQuery(EntityDisambiguationDPO dpo,
        EntityCentricKnowledgeBase kb) {
    LearnToRankQuery query = new LearnToRankQuery();
    List<LearnToRankClause> features = new LinkedList<LearnToRankClause>();
    FuzzyLabelSimilarity fuzzyLabelSim = new FuzzyLabelSimilarity();
    DefaultSimilarity defaultSim = new DefaultSimilarity();
    BM25Similarity bm25 = new BM25Similarity();

    // Feature 1
    features.add(query.add(LuceneFeatures.queryStringFuzzy(
            dpo.getSelectedText(), "Label", fuzzyLabelSim, Occur.MUST,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature1", true));
    // Feature 2
    features.add(query.add(LuceneFeatures.queryStringTerm(
            dpo.getSelectedText(), "Description", defaultSim,
            Occur.SHOULD, DisambiguationMainService.MAXCLAUSECOUNT), "Feature2",
            false));
    // Feature 3
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Label", defaultSim, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature3", false));
    // Feature 4
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Description", defaultSim, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature4", false));
    // Feature 5
    features.add(query.add(LuceneFeatures.queryLabelFuzzy(
            dpo.getSelectedText(), "Label", bm25), "Feature5", false));
    // Feature 6
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Label", bm25, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature6", false));
    // Feature 7
    features.add(query.add(LuceneFeatures.queryStringTerm(dpo.getContext(),
            "Description", bm25, Occur.SHOULD,
            DisambiguationMainService.MAXCLAUSECOUNT), "Feature7", false));
    // Feature 8
    features.add(query.add(
            LuceneFeatures.queryPrior(kb.getFeatureDefinition()),
            "Feature8", false));
    // Feature 9
    features.add(query.add(
            LuceneFeatures.querySensePrior(dpo.getSelectedText(),
                    kb.getFeatureDefinition()), "Feature9", false));

    features.get(0).setWeight(0.0524974f);
    features.get(1).setWeight(0.01771f);
    features.get(2).setWeight(0.0615202f);
    features.get(3).setWeight(0.0933433f);
    features.get(4).setWeight(0.0915161f);
    features.get(5).setWeight(-0.0468604f);
    features.get(6).setWeight(-0.0947746f);
    features.get(7).setWeight(0.0423863f);
    features.get(8).setWeight(0.465053f);
    return query;
}
项目:NYBC    文件:BM25SimilarityFactory.java   
@Override
public Similarity getSimilarity() {
  BM25Similarity sim = new BM25Similarity(k1, b);
  sim.setDiscountOverlaps(discountOverlaps);
  return sim;
}
项目:NYBC    文件:TestBM25SimilarityFactory.java   
/** bm25 with default parameters */
public void test() throws Exception {
  assertEquals(BM25Similarity.class, getSimilarity("text").getClass());
}
项目:search-core    文件:BM25SimilarityFactory.java   
@Override
public Similarity getSimilarity() {
  BM25Similarity sim = new BM25Similarity(k1, b);
  sim.setDiscountOverlaps(discountOverlaps);
  return sim;
}
项目:search-core    文件:TestBM25SimilarityFactory.java   
/** bm25 with default parameters */
public void test() throws Exception {
  assertEquals(BM25Similarity.class, getSimilarity("text").getClass());
}
项目:read-open-source-code    文件:BM25SimilarityFactory.java   
@Override
public Similarity getSimilarity() {
  BM25Similarity sim = new BM25Similarity(k1, b);
  sim.setDiscountOverlaps(discountOverlaps);
  return sim;
}
项目:read-open-source-code    文件:BM25SimilarityFactory.java   
@Override
public Similarity getSimilarity() {
  BM25Similarity sim = new BM25Similarity(k1, b);
  sim.setDiscountOverlaps(discountOverlaps);
  return sim;
}