Python PIL 模块,Image() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用PIL.Image()

项目:EmotiW-2017-Audio-video-Emotion-Recognition    作者:xujinchang    | 项目源码 | 文件源码
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
项目:EmotiW-2017-Audio-video-Emotion-Recognition    作者:xujinchang    | 项目源码 | 文件源码
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
项目:EmotiW-2017-Audio-video-Emotion-Recognition    作者:xujinchang    | 项目源码 | 文件源码
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
项目:EmotiW-2017-Audio-video-Emotion-Recognition    作者:xujinchang    | 项目源码 | 文件源码
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[11:11+128,11:11+128];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
项目:EmotiW-2017-Audio-video-Emotion-Recognition    作者:xujinchang    | 项目源码 | 文件源码
def predict(image,the_net):
    inputs = []
    try:
        tmp_input = image
        tmp_input = cv2.resize(tmp_input,(SIZE,SIZE))
        tmp_input = tmp_input[13:13+224,13:13+224];
        tmp_input = np.subtract(tmp_input,mean)
        tmp_input = tmp_input.transpose((2, 0, 1))
        tmp_input = np.require(tmp_input, dtype=np.float32)
    except Exception as e:
        raise Exception("Image damaged or illegal file format")
        return
    the_net.blobs['data'].reshape(1, *tmp_input.shape)
    the_net.reshape()
    the_net.blobs['data'].data[...] = tmp_input
    the_net.forward()
    scores = the_net.blobs['prob'].data[0]
    return copy.deepcopy(scores)
项目:cortex    作者:rdevon    | 项目源码 | 文件源码
def show(self, image, tshape):
        '''Convers to PIL.image.

        Args:
            image (numpy.array)
            tshape (tuple).

        Returns:
            PIL.Image: image to visualize.

        '''
        fshape = self.image_shape
        X = image.T

        return PIL.Image.fromarray(tile_raster_images(
            X=X, img_shape=fshape, tile_shape=tshape,
            tile_spacing=(1, 1)))
项目:RealtimeFacialEmotionRecognition    作者:sushant3095    | 项目源码 | 文件源码
def vis_square(data, padsize=1, padval=0):
    data -= data.min()
    data /= data.max()

    # Force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
    #UNCOMMENT_THIS data = np.pad(data, padding, mode='reflect', constant_values=(padval, padval))
    data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))

    # Tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    #IF you want to use Show Image for static images, comment out thr if and return statements 
    if data.ndim == 3:
        data = data[:, :, ::-1]
    return data

    #showimage(data)

# Plot the last image and conv1 layer's weights and responses
项目:supic    作者:Hirico    | 项目源码 | 文件源码
def supic_process(input_path, output_dir, out_width, out_height):
    """ customized api for processing input image """
    try:
        enhancer = NeuralEnhancer(loader=False)
        img = scipy.ndimage.imread(input_path, mode='RGB')

        out = enhancer.process(img)
        out = out.resize((out_width, out_height), PIL.Image.BICUBIC)

        name = hex(int(time.time() * 100000))[2:]
        output_path = os.path.join(output_dir, name + '.png')

        out.save(output_path)
        return output_path
    except Exception as e:
        return '!ERROR' + str(e)
项目:omnic    作者:michaelpb    | 项目源码 | 文件源码
def generate_thumb(self, size, orig_resource, thumb_resource):
        with orig_resource.cache_open() as orig:
            im = self.Image.open(orig)
            im.thumbnail(size)
        with thumb_resource.cache_open('wb') as target:
            if thumb_resource.typestring.ts_format == 'thumb.jpg':
                # Ensure it has no alpha before saving
                p_mode_alpha = (im.mode == 'P' and 'transparency' in im.info)
                if im.mode in ('RGBA', 'LA') or p_mode_alpha:
                    alpha = im.convert('RGBA').split()[-1]
                    no_alpha = self.Image.new("RGB", im.size, (255, 255, 255))
                    no_alpha.paste(im, mask=alpha)
                    no_alpha.save(target, 'JPEG')
                else:
                    im.save(target, 'JPEG')
            else:
                # Save as is
                im.save(target)
项目:driveboardapp    作者:nortd    | 项目源码 | 文件源码
def test_pil_plugins(pyi_builder):
    pyi_builder.test_source(
        """
        # Verify packaging of PIL.Image. Specifically, the hidden import of FixTk
        # importing tkinter is causing some problems.
        from PIL.Image import fromstring
        print(fromstring)

        # PIL import hook should bundle all available PIL plugins. Verify that plugins
        # are bundled.
        from PIL import Image
        Image.init()
        MIN_PLUG_COUNT = 7  # Without all plugins the count is usually 6.
        plugins = list(Image.SAVE.keys())
        plugins.sort()
        if len(plugins) < MIN_PLUG_COUNT:
            raise SystemExit('No PIL image plugins were bundled!')
        else:
            print('PIL supported image formats: %s' % plugins)
        """)
项目:munch-core    作者:crunchmail    | 项目源码 | 文件源码
def test_image_resizing(self):
        image = Image(organization=self.organization)
        file = ContentFile(self.create_random_image(100, 100).read())

        image.file.save('random_image.png', file, save=False)
        image.save()

        image_file = PIL.Image.open(image.file.file)
        self.assertEqual((100, 100), image_file.size)

        image = Image(organization=self.organization)
        file = ContentFile(self.create_random_image(100, 100).read())

        image.file.save('random_image.png', file, save=False)
        image.width = 50
        image.save()

        image_file = PIL.Image.open(image.file.file)
        self.assertEqual((50, 50), image_file.size)
项目:LIE    作者:EmbraceLife    | 项目源码 | 文件源码
def plot_image(image):
    # Assume the pixel-values are scaled between 0 and 255.

    if False:
        # Convert the pixel-values to the range between 0.0 and 1.0
        image = np.clip(image/255.0, 0.0, 1.0)

        # Plot using matplotlib.
        plt.imshow(image, interpolation='lanczos')
        plt.show()
    else:
        # Ensure the pixel-values are between 0 and 255.
        image = np.clip(image, 0.0, 255.0)

        # Convert pixels to bytes.
        image = image.astype(np.uint8)

        # Convert to a PIL-image and display it.
        display(PIL.Image.fromarray(image))


# Normalize an image so its values are between 0.0 and 1.0. This is useful for plotting the gradient.

# In[13]:
项目:augment3D    作者:yulkang    | 项目源码 | 文件源码
def loadPIL_LUT(self, dataset):
        if not have_PIL:
            raise ImportError("Python Imaging Library is not available. See http://www.pythonware.com/products/pil/ to download and install")
        if('PixelData' not in dataset):
            raise TypeError("Cannot show image -- DICOM dataset does not have pixel data")
        if('WindowWidth' not in dataset) or ('WindowCenter' not in dataset):  # can only apply LUT if these values exist
            bits = dataset.BitsAllocated
            samples = dataset.SamplesPerPixel
            if bits == 8 and samples == 1:
                mode = "L"
            elif bits == 8 and samples == 3:
                mode = "RGB"
            elif bits == 16:  # not sure about this -- PIL source says is 'experimental' and no documentation.
                mode = "I;16"  # Also, should bytes swap depending on endian of file and system??
            else:
                raise TypeError("Don't know PIL mode for %d BitsAllocated and %d SamplesPerPixel" % (bits, samples))
            size = (dataset.Columns, dataset.Rows)
            im = PIL.Image.frombuffer(mode, size, dataset.PixelData, "raw", mode, 0, 1)  # Recommended to specify all details by http://www.pythonware.com/library/pil/handbook/image.htm
        else:
            image = self.get_LUT_value(dataset.pixel_array, dataset.WindowWidth, dataset.WindowCenter)
            im = PIL.Image.fromarray(image).convert('L')  # Convert mode to L since LUT has only 256 values: http://www.pythonware.com/library/pil/handbook/image.htm
        return im
项目:tensorlight    作者:bsautermeister    | 项目源码 | 文件源码
def image_from_array(img_array, format='png'):
    """Creates an image object from a given numpy array.
    Parameters
    ----------
    img_array : numpy.ndarray
        The image data, which can have 1 or 3 color channels.
    Returns
    -------
    IPython.display.Image
        An image object for plots.
    """
    factor = 1
    if utils.image.is_float_image(img_array):
        factor = 255

    img_data = np.uint8(img_array * factor)
    f = StringIO()
    img_data = utils.image.to_rgb(img_data)
    arr = PIL.Image.fromarray(img_data)
    arr.save(f, format)
    return Image(data=f.getvalue())
项目:ImageSimilarFinder    作者:zhangjizxc    | 项目源码 | 文件源码
def load_image(filename):
    image = None
    if wand is not None:
        try:
          image=wand.image.Image(filename=filename)
        except:
          image = None
        return image
    elif PIL is not None:
        try:
          image=PIL.Image.open(filename)
        except:
          image = None
          print(filename+" is not a invalid img!")
        return image
    else:
        sys.stderr.write('You must have wand or Pillow/PIL installed to use the dhash command\n')
        sys.exit(1)
项目:ImageSimilarFinder    作者:zhangjizxc    | 项目源码 | 文件源码
def arrangePics(targetDir, picDir):
    targetDirPathLen=len(targetDir)
    count=0
    for path, d, filelist in os.walk(targetDir):
        if (not path.endswith('.git')) and isPathInList(targetLimitedSubDirs, path):
            for filename in filelist:
                if (filename.endswith('jpg') or filename.endswith('png') or filename.endswith('jpeg') or filename.endswith('gif')):
                    fileNameWithPath = os.path.join(path, filename)
                    image = load_image(fileNameWithPath)
                    if (image is not None):
                        ratio = format(float(image.height) / float(image.width), '.2f')
                        tempPath = os.path.join(picDir, str(ratio))
                        if (not os.path.exists(tempPath)):
                            os.mkdir(tempPath)
                        filenameNew=fileNameWithPath[targetDirPathLen+1:].replace('/', "_", 50)
                        tempFileNameWithPath = os.path.join(tempPath, filenameNew)
                        print(fileNameWithPath+"  copy to "+tempFileNameWithPath)
                        count = count + 1
                        shutil.copy(fileNameWithPath, tempFileNameWithPath)
    print("Total Image count is "+str(count))
项目:ccmas-imgen    作者:ccmas-imgen    | 项目源码 | 文件源码
def similarity(self, imgA, imgB):
        """Given two images of the same size, this function compute the similarity of the pixel
        values. The function compute the differences of RGB values of a pixel and weight it with
        the alpha value.

        :param imgA: Image to be compared.
        :param imgB: Image to be compared.
        :returns:
            Similarity of two images. 
        """
        #
        # print(imgA)
        # print(imgB)

        delta_R = imgA[:,:,0] - imgB[:,:,0]
        delta_G = imgA[:,:,1] - imgB[:,:,1]
        delta_B = imgA[:,:,2] - imgB[:,:,2]

        delta = (np.absolute(delta_R) + np.absolute(delta_G) + np.absolute(delta_B)) / 3

        return (1 - np.mean(delta))
项目:bids    作者:robertoostenveld    | 项目源码 | 文件源码
def loadPIL_LUT(self, dataset):
        if not have_PIL:
            raise ImportError("Python Imaging Library is not available. See http://www.pythonware.com/products/pil/ to download and install")
        if('PixelData' not in dataset):
            raise TypeError("Cannot show image -- DICOM dataset does not have pixel data")
        if('WindowWidth' not in dataset) or ('WindowCenter' not in dataset):  # can only apply LUT if these values exist
            bits = dataset.BitsAllocated
            samples = dataset.SamplesPerPixel
            if bits == 8 and samples == 1:
                mode = "L"
            elif bits == 8 and samples == 3:
                mode = "RGB"
            elif bits == 16:  # not sure about this -- PIL source says is 'experimental' and no documentation.
                mode = "I;16"  # Also, should bytes swap depending on endian of file and system??
            else:
                raise TypeError("Don't know PIL mode for %d BitsAllocated and %d SamplesPerPixel" % (bits, samples))
            size = (dataset.Columns, dataset.Rows)
            im = PIL.Image.frombuffer(mode, size, dataset.PixelData, "raw", mode, 0, 1)  # Recommended to specify all details by http://www.pythonware.com/library/pil/handbook/image.htm
        else:
            image = self.get_LUT_value(dataset.pixel_array, dataset.WindowWidth, dataset.WindowCenter)
            im = PIL.Image.fromarray(image).convert('L')  # Convert mode to L since LUT has only 256 values: http://www.pythonware.com/library/pil/handbook/image.htm
        return im
项目:org-chart-builder    作者:Hitachi-Data-Systems    | 项目源码 | 文件源码
def pytest_runtest_setup(item):
    if isinstance(item, item.Function):
        try:
            from PIL import Image
        except ImportError:
            Image = False
        if item.get_marker("pil_required") and Image is False:
            pytest.skip("PIL must be installed")
        elif item.get_marker("pil_not_installed") and Image:
            pytest.skip("PIL is installed")
        elif item.get_marker("not_py33"):
            pytest.skip("Ordering is not a given in Python 3")
        elif item.get_marker("lxml_required"):
            from openpyxl import LXML
            if not LXML:
                pytest.skip("LXML is required for some features such as schema validation")
项目:stash-scanner    作者:senuido    | 项目源码 | 文件源码
def onDownloadComplete(self, url, data):
        self.requested = False
        if not data:
            # print('Request Failed: {}'. format(self.result.item.name))
            return
        if self.image:
            return

        # CONVERT DATA TO GIF IMAGE
        try:
            img = PIL.Image.open(data)
            self.image = PIL.ImageTk.PhotoImage(img)
            self.updateOverlayImage(img)

            if url not in self.CACHE:
                self.CACHE[url] = data

            # notify ui
            self.ui_queue.put((MsgType.Object, self))
        except OSError as e:
            item = self.item
            with open('tmp\\{}.err.png'.format(item.name.strip()), mode='wb') as f:
                f.write(data.getvalue())
            logger.error('Image conversion failed: {}, Length: {}\t{}'.format(item.name, len(data.getvalue()), url))
项目:wahcade    作者:sairuk    | 项目源码 | 文件源码
def pil_image_to_pixbuf(self, image_fn, angle):
        """use Python Image Library (PIL) to load an image, rotate it, and return as a pixbuf)
        """
        pixbuf = None
        if os.path.isfile(image_fn):
            pil_image = PIL.Image.open(image_fn)
            if angle is not 0:
                pil_image = pil_image.rotate(angle,PIL.Image.BICUBIC,1)
            fd = StringIO.StringIO()
            pil_image.save(fd, "png")
            contents = fd.getvalue()
            fd.close()
            loader = gtk.gdk.PixbufLoader("png")
            loader.write(contents, len(contents))
            pixbuf = loader.get_pixbuf()
            loader.close()
        #done
        return pixbuf
项目:mxbox    作者:Lyken17    | 项目源码 | 文件源码
def __call__(self, img):
        """
        Args:
            img (PIL.Image): Image to be scaled.

        Returns:
            PIL.Image: Rescaled image.
        """
        if isinstance(self.size, int):
            w, h = img.size
            if (w <= h and w == self.size) or (h <= w and h == self.size):
                return img
            if w < h:
                ow = self.size
                oh = int(self.size * h / w)
                return img.resize((ow, oh), self.interpolation)
            else:
                oh = self.size
                ow = int(self.size * w / h)
                return img.resize((ow, oh), self.interpolation)
        else:
            return img.resize(self.size, self.interpolation)
项目:mac-package-build    作者:persepolisdm    | 项目源码 | 文件源码
def test_pil_plugins(pyi_builder):
    pyi_builder.test_source(
        """
        # Verify packaging of PIL.Image. Specifically, the hidden import of FixTk
        # importing tkinter is causing some problems.
        from PIL.Image import fromstring
        print(fromstring)

        # PIL import hook should bundle all available PIL plugins. Verify that plugins
        # are bundled.
        from PIL import Image
        Image.init()
        MIN_PLUG_COUNT = 7  # Without all plugins the count is usually 6.
        plugins = list(Image.SAVE.keys())
        plugins.sort()
        if len(plugins) < MIN_PLUG_COUNT:
            raise SystemExit('No PIL image plugins were bundled!')
        else:
            print('PIL supported image formats: %s' % plugins)
        """)
项目:QScode    作者:PierreHao    | 项目源码 | 文件源码
def Run(self, img_path, guide_image_path='', objective=0):
        """Run deep dream"""
        self.guide_path = guide_image_path
        if self.guide_path != '':
            self.Get_guide()
        self.net.blobs.keys()
        if img_path != '':
            frame = PIL.Image.open(img_path)
            frame = imresize(frame)
            frame = np.float32(frame)
        else:
            frame = self.GenerateInputImage()
        frame_i = 0
        h, w = frame.shape[:2]
        #s = 0.05 # scale coefficient
        for i in xrange(self.epoch):
            start = time.time()
            frame = self.Deepdream(frame)
            PIL.Image.fromarray(np.uint8(frame)).save("frames/%04d.jpg"%frame_i)
            #frame = nd.affine_transform(frame, [1-s,1-s,1], [h*s/2,w*s/2,0], order=1)
            frame_i += 1
            stop = time.time()
            print "Time cost for {:d}th image: {:.3f} s".format(i,stop-start)
项目:oio-sds-utils    作者:open-io    | 项目源码 | 文件源码
def run_inference_on_image(image):
  """Runs inference on an image.

  Args:
    image: Image file name.

  Returns:
    Nothing
  """
  #image_data = tf.gfile.FastGFile(image, 'rb').read()
  image_data = image

  # Creates graph from saved GraphDef.
  #create_graph()

  with tf.Session() as sess:
    # Some useful tensors:
    # 'softmax:0': A tensor containing the normalized prediction across
    #   1000 labels.
    # 'pool_3:0': A tensor containing the next-to-last layer containing 2048
    #   float description of the image.
    # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
    #   encoding of the image.
    # Runs the softmax tensor by feeding the image_data as input to the graph.
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    predictions = sess.run(softmax_tensor,
                           {'DecodeJpeg/contents:0': image_data.tostring()})
    predictions = np.squeeze(predictions)
    sess.close()

    # Creates node ID --> English string lookup.
    node_lookup = NodeLookup()

    top_k = predictions.argsort()[1:][::-1]
    human_string = node_lookup.id_to_string(top_k[0])
    score = predictions[top_k[0]]
    return {
      'autocategory': human_string,
      'autocategoryconfidence': str(score)
      }
      #print('%s (score = %.5f)' % (human_string, score))
项目:Steganography    作者:Ludisposed    | 项目源码 | 文件源码
def check_space(text,data):
    if data.size < len(text):
        print '[*] Image not big enough'
        sys.exit(0)
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL model (default)
#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL model (default)
#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))



#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL
#PLEASE MAKE SURE TO SELECT THE RIGHT MODEL FOR THE KEYS!!!
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))



#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))


#ANIMAL model (default)
#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))



#Here you select the model
项目:deepdream    作者:martinkaptein    | 项目源码 | 文件源码
def showarray(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))



#Here you select the model
项目:nimo    作者:wolfram2012    | 项目源码 | 文件源码
def test_pil_version(self):
        import sys
        import PIL.Image
        major,minor,sub = PIL.Image.VERSION.split('.')[:3]
        rmajor,rminor,rsub = 1,1,5 # 2008/03/20
        major,minor,sub = int(major),int(minor),int(sub)
        print >> sys.stderr, "%d.%d.%d >= %d.%d.%d "%(major,minor,sub,rmajor,rminor,rsub),
        sys.stderr.flush()
        self.assert_(major > rmajor 
                     or major == rmajor and minor >= rminor 
                     or major == rmajor and minor == rminor and sub >= sub)
项目:aws-cfn-plex    作者:lordmuffin    | 项目源码 | 文件源码
def depart_header(self, node):
        start = self.context.pop()
        header = [self.starttag(node, 'div', CLASS='header')]
        header.extend(self.body[start:])
        header.append('\n<hr class="header"/>\n</div>\n')
        self.body_prefix.extend(header)
        self.header.extend(header)
        del self.body[start:]

    # Image types to place in an <object> element
项目:ATX    作者:NetEaseGame    | 项目源码 | 文件源码
def _screencap(args):
    dev = ioskit.Device(args.udid)
    image = dev.screenshot()
    if args.rotate:
        method = getattr(Image, 'ROTATE_{}'.format(args.rotate))
        image = image.transpose(method)
    image.save(args.output)
    print 'Screenshot saved to "%s"' % args.output
项目:ATX    作者:NetEaseGame    | 项目源码 | 文件源码
def screenshot(self, filename=None):
        '''
        Take ios screenshot
        Args:
            - filename(string): optional
        Returns:
            PIL.Image object
        '''
        image = self.d.screenshot()
        if self.rotation:
            method = getattr(Image, 'ROTATE_{}'.format(self.rotation*90))
            image = image.transpose(method)
        if filename:
            image.save(filename)
        return image
项目:AshsSDK    作者:thehappydinoa    | 项目源码 | 文件源码
def depart_header(self, node):
        start = self.context.pop()
        header = [self.starttag(node, 'div', CLASS='header')]
        header.extend(self.body[start:])
        header.append('\n<hr class="header"/>\n</div>\n')
        self.body_prefix.extend(header)
        self.header.extend(header)
        del self.body[start:]

    # Image types to place in an <object> element
项目:video-pose-extractor    作者:JustinShenk    | 项目源码 | 文件源码
def showBGRimage(a, fmt='jpeg'):
    a = np.uint8(np.clip(a, 0, 255))
    a[:,:,[0,2]] = a[:,:,[2,0]] # for B,G,R order
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))
项目:video-pose-extractor    作者:JustinShenk    | 项目源码 | 文件源码
def showmap(a, fmt='png'):
    a = np.uint8(np.clip(a, 0, 255))
    f = StringIO()
    PIL.Image.fromarray(a).save(f, fmt)
    display(Image(data=f.getvalue()))

#def checkparam(param):
#    octave = param['octave']
#    starting_range = param['starting_range']
#    ending_range = param['ending_range']
#    assert starting_range <= ending_range, 'starting ratio should <= ending ratio'
#    assert octave >= 1, 'octave should >= 1'
#    return starting_range, ending_range, octave
项目:spoofnet-tensorflow    作者:yomna-safaa    | 项目源码 | 文件源码
def load_and_resize_image(path, height, width, mode='RGB'):
    """
    Returns an np.ndarray (height x width x channels)

    mode -- (RGB for color or L for grayscale)
    """

    image = PIL.Image.open(path)  # YY => RGB 8 bits, jpeg format, instance of Image class, not ndarray
    image = image.convert(mode)
    image = np.array(image)  # YY => ndarray, uint8 values bet 0 and 255, shape 240x320x3 (h x w x ch)
    if height > 0 and width > 0:
        image = scipy.misc.imresize(image, (height, width),
                                    'bilinear')  # YY => ndarray, uint8 values bet 0 and 255, shape (h2 x w2 x ch)

    return image
项目:AutomatorX    作者:xiaoyaojjian    | 项目源码 | 文件源码
def _screencap(args):
    dev = ioskit.Device(args.udid)
    image = dev.screenshot()
    if args.rotate:
        method = getattr(Image, 'ROTATE_{}'.format(args.rotate))
        image = image.transpose(method)
    image.save(args.output)
    print 'Screenshot saved to "%s"' % args.output
项目:AutomatorX    作者:xiaoyaojjian    | 项目源码 | 文件源码
def screenshot(self, filename=None):
        '''
        Take ios screenshot
        Args:
            - filename(string): optional
        Returns:
            PIL.Image object
        '''
        image = self.d.screenshot()
        if self.rotation:
            method = getattr(Image, 'ROTATE_{}'.format(self.rotation*90))
            image = image.transpose(method)
        if filename:
            image.save(filename)
        return image
项目:omnic    作者:michaelpb    | 项目源码 | 文件源码
def __init__(self):
        super(self).__init__()
        # Import from Image only when in use
        from PIL import Image
        self.Image = Image
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def save_array_to_tiff(array, output, verbose=True):
    '''Y.G. Nov 1, 2017
    Save array to a tif file
    '''
    img = PIL.Image.fromarray(array)  
    img.save(  output )  
    if verbose:
        print( 'The data is save to: %s.'%( output ))
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def load_pilatus(filename):
    '''Y.G. Nov 1, 2017
    Load a pilatus 2D image
    '''    
    return np.array(  PIL.Image.open(filename).convert('I') )
项目:chxanalys    作者:yugangzhang    | 项目源码 | 文件源码
def get_avg_img( data_series,  img_samp_index=None, sampling = 100, plot_ = False , save=False, *argv,**kwargs):   
    '''Get average imagef from a data_series by every sampling number to save time'''
    if img_samp_index is None:
        avg_img = np.average(data_series[:: sampling], axis=0)
    else:
        avg_img = np.zeros_like( data_series[0] )
        n=0
        for i in img_samp_index:
            avg_img += data_series[i]
            n +=1
        avg_img = np.array( avg_img) / n

    if plot_:
        fig, ax = plt.subplots()
        uid = 'uid'
        if 'uid' in kwargs.keys():
            uid = kwargs['uid'] 

        im = ax.imshow(avg_img , cmap='viridis',origin='lower',
                   norm= LogNorm(vmin=0.001, vmax=1e2))
        #ax.set_title("Masked Averaged Image")
        ax.set_title('uid= %s--Masked Averaged Image'%uid)
        fig.colorbar(im)

        if save:
            #dt =datetime.now()
            #CurTime = '%s%02d%02d-%02d%02d-' % (dt.year, dt.month, dt.day,dt.hour,dt.minute)             
            path = kwargs['path'] 
            if 'uid' in kwargs:
                uid = kwargs['uid']
            else:
                uid = 'uid'
            #fp = path + "uid= %s--Waterfall-"%uid + CurTime + '.png'     
            fp = path + "uid=%s--avg-img-"%uid  + '.png'    
            fig.savefig( fp, dpi=fig.dpi)        
        #plt.show()

    return avg_img
项目:YukirinCogs    作者:skeith    | 项目源码 | 文件源码
def kitty(self):
        """The cure of boredom."""
        try:
            async with self.session.get(self.caturl) as r:
                result = await r.json()
            cat = discord.Embed(description="\u2063", color=discord.Color(0xffb6c1))
            cat.set_image(url=result['file'])
            # await self.bot.say(result['file'])
            await self.bot.say(embed=cat)
        except:
            await self.bot.say("Couldn't Get An Image")
项目:YukirinCogs    作者:skeith    | 项目源码 | 文件源码
def fox(self):
        """Another cure of boredom."""
        try:
            async with self.session.get(self.foxurl) as r:
                result = await r.json()
            fox = discord.Embed(description="\u2063", color=discord.Color(0xffb6c1))
            fox.set_image(url=result['file'])
            # await self.bot.say(result['file'])
            await self.bot.say(embed=fox)
        except:
            await self.bot.say("Couldn't Get An Image")