Python __builtin__ 模块,max() 实例源码

我们从Python开源项目中,提取了以下15个代码示例,用于说明如何使用__builtin__.max()

项目:python-application    作者:AGProjects    | 项目源码 | 文件源码
def limit(value, min=negative_infinite, max=positive_infinite):
    """Limit a numeric value to the specified range"""
    return maximum(min, minimum(value, max))
项目:ndh-challenges    作者:the-mandarine    | 项目源码 | 文件源码
def _get_clipfn(size, signed=True):
    maxval = _get_maxval(size, signed)
    minval = _get_minval(size, signed)
    return lambda val: __builtin__.max(min(val, maxval), minval)
项目:ndh-challenges    作者:the-mandarine    | 项目源码 | 文件源码
def max(cp, size):
    _check_params(len(cp), size)

    if len(cp) == 0:
        return 0

    return __builtin__.max(abs(sample) for sample in _get_samples(cp, size))
项目:ndh-challenges    作者:the-mandarine    | 项目源码 | 文件源码
def minmax(cp, size):
    _check_params(len(cp), size)

    max_sample, min_sample = 0, 0
    for sample in _get_samples(cp, size):
        max_sample = __builtin__.max(sample, max_sample)
        min_sample = __builtin__.min(sample, min_sample)

    return min_sample, max_sample
项目:ndh-challenges    作者:the-mandarine    | 项目源码 | 文件源码
def maxpp(cp, size):
    _check_params(len(cp), size)
    sample_count = _sample_count(cp, size)

    prevextremevalid = False
    prevextreme = None
    max = 0

    prevval = getsample(cp, size, 0)
    val = getsample(cp, size, 1)

    prevdiff = val - prevval

    for i in range(1, sample_count):
        val = getsample(cp, size, i)
        diff = val - prevval

        if diff * prevdiff < 0:
            if prevextremevalid:
                extremediff = abs(prevval - prevextreme)
                if extremediff > max:
                    max = extremediff
            prevextremevalid = True
            prevextreme = prevval

        prevval = val
        if diff != 0:
            prevdiff = diff

    return max
项目:fypp    作者:aradi    | 项目源码 | 文件源码
def _postprocess_eval_line(self, evalline, fname, span):
        lines = evalline.split('\n')
        # If line ended on '\n', last element is ''. We remove it and
        # add the trailing newline later manually.
        trailing_newline = (lines[-1] == '')
        if trailing_newline:
            del lines[-1]
        lnum = linenumdir(span[0], fname) if self._linenums else ''
        clnum = lnum if self._contlinenums else ''
        linenumsep = '\n' + lnum
        clinenumsep = '\n' + clnum
        foldedlines = [self._foldline(line) for line in lines]
        outlines = [clinenumsep.join(lines) for lines in foldedlines]
        result = linenumsep.join(outlines)
        # Add missing trailing newline
        if trailing_newline:
            trailing = '\n'
            if self._linenums:
                # Last line was folded, but no linenums were generated for
                # the continuation lines -> current line position is not
                # in sync with the one calculated from the last line number
                unsync = (
                    len(foldedlines) and len(foldedlines[-1]) > 1
                    and not self._contlinenums)
                # Eval directive in source consists of more than one line
                multiline = span[1] - span[0] > 1
                if unsync or multiline:
                    # For inline eval directives span[0] == span[1]
                    # -> next line is span[0] + 1 and not span[1] as for
                    # line eval directives
                    nextline = max(span[1], span[0] + 1)
                    trailing += linenumdir(nextline, fname)
        else:
            trailing = ''
        return result + trailing
项目:fypp    作者:aradi    | 项目源码 | 文件源码
def _get_smart_fold_pos(line, start, end):
        linelen = end - start
        ispace = line.rfind(' ', start, end)
        # The space we waste for smart folding should be max. 1/3rd of the line
        if ispace != -1 and ispace >= start + (2 * linelen) // 3:
            return ispace
        else:
            return end
项目:Deep-Subspace-Clustering    作者:tonyabracadabra    | 项目源码 | 文件源码
def sizeof(self,ix):
        if isinstance(ix,int):
            n = ix+1
        elif isinstance(ix,slice):
            n = ix.stop
        elif isinstance(ix,(list,np.ndarray)):
            n = max(ix)+1
        else:
            assert 0,ix
        if not isinstance(n,int):
            raise IndexError
        return n
项目:Deep-Subspace-Clustering    作者:tonyabracadabra    | 项目源码 | 文件源码
def length(a):
    try:
        return __builtin__.max(np.asarray(a).shape)
    except ValueError:
        return 1
项目:Deep-Subspace-Clustering    作者:tonyabracadabra    | 项目源码 | 文件源码
def max(a, d=0, nargout=0):
    if d or nargout:
        raise NotImplementedError
    return np.amax(a)
项目:wechatvoice    作者:netcharm    | 项目源码 | 文件源码
def _get_clipfn(size, signed=True):
    maxval = _get_maxval(size, signed)
    minval = _get_minval(size, signed)
    return lambda val: __builtin__.max(min(val, maxval), minval)
项目:wechatvoice    作者:netcharm    | 项目源码 | 文件源码
def max(cp, size):
    _check_params(len(cp), size)

    if len(cp) == 0:
        return 0

    return __builtin__.max(abs(sample) for sample in _get_samples(cp, size))
项目:wechatvoice    作者:netcharm    | 项目源码 | 文件源码
def minmax(cp, size):
    _check_params(len(cp), size)

    max_sample, min_sample = 0, 0
    for sample in _get_samples(cp, size):
        max_sample = __builtin__.max(sample, max_sample)
        min_sample = __builtin__.min(sample, min_sample)

    return min_sample, max_sample
项目:wechatvoice    作者:netcharm    | 项目源码 | 文件源码
def maxpp(cp, size):
    _check_params(len(cp), size)
    sample_count = _sample_count(cp, size)

    prevextremevalid = False
    prevextreme = None
    max = 0

    prevval = getsample(cp, size, 0)
    val = getsample(cp, size, 1)

    prevdiff = val - prevval

    for i in range(1, sample_count):
        val = getsample(cp, size, i)
        diff = val - prevval

        if diff * prevdiff < 0:
            if prevextremevalid:
                extremediff = abs(prevval - prevextreme)
                if extremediff > max:
                    max = extremediff
            prevextremevalid = True
            prevextreme = prevval

        prevval = val
        if diff != 0:
            prevdiff = diff

    return max
项目:Deep-Subspace-Clustering    作者:tonyabracadabra    | 项目源码 | 文件源码
def __setitem__(self,index,value):
        #import pdb; pdb.set_trace()
        indices = self.compute_indices(index)
        try:
            if len(indices) == 1:
                np.asarray(self).reshape(-1,order="F").__setitem__(indices,value)
            else:
                np.asarray(self).__setitem__(indices,value)
        except (ValueError,IndexError):
            #import pdb; pdb.set_trace()
            if not self.size:
                new_shape = [self.sizeof(s) for s in indices]
                self.resize(new_shape,refcheck=0)
                np.asarray(self).__setitem__(indices,value)
            elif len(indices) == 1:
                # One-dimensional resize is only implemented for
                # two cases:
                #
                # a. empty matrices having shape [0 0]. These
                #    matries may be resized to any shape.  A[B]=C
                #    where A=[], and B is specific -- A[1:10]=C
                #    rather than A[:]=C or A[1:end]=C
                if self.size and not isvector_or_scalar(self):
                    raise IndexError("One-dimensional resize "
                                     "works only on vectors, and "
                                     "row and column matrices")
                # One dimensional resize of scalars creates row matrices
                # ai = 3
                # a(4) = 1
                # 3 0 0 1
                n = self.sizeof(indices[0]) # zero-based
                if max(self.shape) == 1:
                    new_shape = list(self.shape)
                    new_shape[-1] = n
                else:
                    new_shape = [(1 if s==1 else n) for s in self.shape]
                self.resize(new_shape,refcheck=0)
                np.asarray(self).reshape(-1,order="F").__setitem__(indices,value)
            else:
                new_shape = list(self.shape)
                if self.flags["C_CONTIGUOUS"]:
                    new_shape[0] = self.sizeof(indices[0])
                elif self.flags["F_CONTIGUOUS"]:
                    new_shape[-1] = self.sizeof(indices[-1])
                self.resize(new_shape,refcheck=0)
                np.asarray(self).__setitem__(indices,value)