Python builtins 模块,float() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用builtins.float()

项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:gfapy    作者:ggonnella    | 项目源码 | 文件源码
def _get_default_gfa_tag_datatype(obj):
    """Default GFA tag datatype for a given object

    Parameters:
      obj : an object of any Python class

    Returns:
      str : the identifier of a datatype (one of the keys of FIELD_MODULE)
        to be used for a tag with obj as value, if a datatype has not
        been specified by the user
    """
    if getattr(obj, "_default_gfa_tag_datatype",None):
      return obj._default_gfa_tag_datatype()
    else:
      if isinstance(obj, list) and\
             (all([isinstance(v, builtins.int) for v in obj]) or
              all([isinstance(v, builtins.float) for v in obj])):
        return "B"
      for k,v in gfapy.Field._default_tag_datatypes:
        if isinstance(obj, k):
          return v
      return "J"
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def validate_type_declaration(type_decl):
    """
    Check if a type delaration is valid

    A type declaration can either declare a primitive value (e.g. int, float,
    string etc.), a custom type value (Enum or Named Hash) or a typed array
    containing a value of either a primitive type or a custom type (e.g.
    array<int>, array<{CustomType}>, ...)

    Args:
        type_decl (str): The type declaration to validate

    Returns:
        bool: True if valid, False if not
    """
    if validate_primitive_type_name(type_decl):
        return True

    if validate_custom_type_name(type_decl):
        return True

    if validate_typed_array_declaration(type_decl):
        return True

    return False
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:reframe    作者:eth-cscs    | 项目源码 | 文件源码
def assert_bounded(val, lower=None, upper=None, msg=None):
    """Assert that ``lower <= val <= upper``.

    :arg val: The value to check.
    :arg lower: The lower bound. If ``None``, it defaults to ``-inf``.
    :arg upper: The upper bound. If ``None``, it defaults to ``inf``.
    :returns: ``True`` on success.
    :raises reframe.core.exceptions.SanityError: if assertion fails.
    """
    if lower is None:
        lower = builtins.float('-inf')

    if upper is None:
        upper = builtins.float('inf')

    if val >= lower and val <= upper:
        return True

    error_msg = msg or 'value {0} not within bounds {1}..{2}'
    raise SanityError(_format(error_msg, val, lower, upper))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _set_array_types():
    ibytes = [1, 2, 4, 8, 16, 32, 64]
    fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
    for bytes in ibytes:
        bits = 8*bytes
        _add_array_type('int', bits)
        _add_array_type('uint', bits)
    for bytes in fbytes:
        bits = 8*bytes
        _add_array_type('float', bits)
        _add_array_type('complex', 2*bits)
    _gi = dtype('p')
    if _gi.type not in sctypes['int']:
        indx = 0
        sz = _gi.itemsize
        _lst = sctypes['int']
        while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
            indx += 1
        sctypes['int'].insert(indx, _gi.type)
        sctypes['uint'].insert(indx, dtype('P').type)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def json2py(json_type):
    mapping = {'bool': 'bool', 'int': 'int', 'float': 'float', 'string':
               'str', 'array': 'list', 'hash': 'dict', 'base64': 'str'}

    if json_type not in mapping:
        return None

    return mapping[json_type]
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def __init__(self):
        """
        Constructor
        """
        self.functions = []
        self.functions_dict = {}

        self.custom_types = []
        self.custom_types_dict = {}

        self.description = {
                'name': '',
                'description': '',
                'version': '',
                'custom_fields': {}
        }

        self.builtins = {}
        self.builtins['__describe_service'] = self.describe_service
        self.builtins['__describe_functions'] = self.describe_functions
        self.builtins['__describe_custom_types'] = self.describe_custom_types

        self.named_hash_validation = True

        self.json2py = {'bool': 'bool', 'int': 'int', 'float': 'float', 'string':
                'str', 'array': 'list', 'hash': 'dict', 'base64': 'str'}

        self.py2json = {'bool': 'bool', 'int': 'int', 'float': 'float', 'str':
                'string', 'list': 'array', 'dict': 'hash'}
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def div(a, b):
    return float(a) / float(b)
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def test_type_checks(self):
        rpc = RpcProcessor()

        echo_func = RpcFunction(echo, 'echo', 'Returns what it was given',
                'string', 'Same value as the first parameter')
        echo_func.add_param('string', 'message', 'Message to send back')

        rpc.add_function(echo_func)

        add_func = RpcFunction(add, 'add', 'Returns the sum of the two parameters',
                'int', 'Sum of a and b')
        add_func.add_param('int', 'a', 'First int to add')
        add_func.add_param('int', 'b', 'Second int to add')

        rpc.add_function(add_func)

        reply = rpc.process_request('{"method": "echo", "params": [42], "id": 1}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError', 'message':'echo: Expected value of type \'string\' for parameter \'message\' but got value of type \'int\''})

        reply = rpc.process_request('{"method": "echo", "params": [[]], "id": 2}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError', 'message':'echo: Expected value of type \'string\' for parameter \'message\' but got value of type \'array\''})

        reply = rpc.process_request('{"method": "add", "params": [4, 8.9], "id": 3}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError', 'message':'add: Expected value of type \'int\' for parameter \'b\' but got value of type \'float\''})

        reply = rpc.process_request('{"method": "add", "params": [4, {"test": 8}], "id": 3}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError', 'message':'add: Expected value of type \'int\' for parameter \'b\' but got value of type \'hash\''})
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def test_type_checks_for_fields_of_named_hashes(self):
        rpc = RpcProcessor()

        custom_type = JsonHashType('CustomHash', 'Dummy named hash for testing')
        custom_type.add_field('boolfield', 'bool', 'Some bool')
        custom_type.add_field('stringfield', 'string', 'Some string')
        custom_type.add_field('intfield', 'int', 'Some integer')
        custom_type.add_field('floatfield', 'float', 'Some float')
        custom_type.add_field('arrayfield', 'array', 'City')
        custom_type.add_field('hashfield', 'hash', 'City')

        rpc.add_custom_type(custom_type)
        rpc.enable_named_hash_validation()

        echo_hash_func = RpcFunction(echo_hash, 'echo_hash', 'Returns what it was given',
                'hash', 'Same value as the first parameter')
        echo_hash_func.add_param('CustomHash', 'custom_hash', 'Some custom hash instance')

        rpc.add_function(echo_hash_func)

        # Call with an empty hash should get us an error mentioning the first missing field
        reply = rpc.process_request('{"method": "echo_hash", "params": [{}], "id": 1}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError',
            'message': "echo_hash: Named hash parameter 'custom_hash' of type 'CustomHash': Missing field 'boolfield'"
        })

        # Call with an invalid field should return the corresponding error
        reply = rpc.process_request('{"method": "echo_hash", "params": [{"boolfield": true, "stringfield": 5, "intfield": 5, "floatfield": 5.5, "arrayfield": [], "hashfield": {}}], "id": 2}')
        self.assertEqual(reply['result'], None)
        self.assertEqual(reply['error'], {'name': 'TypeError', 'message': "echo_hash: Expected value of type 'string' for parameter 'custom_hash.stringfield' but got value of type 'int'"})

        # Call with a valid hash should return the same hash without error
        reply = rpc.process_request('{"method": "echo_hash", "params": [{"boolfield": true, "stringfield": "test", "intfield": 5, "floatfield": 5.5, "arrayfield": [], "hashfield": {}}], "id": 3}')
        self.assertEqual(reply['error'], None)
        self.assertEqual(reply['result'], {"boolfield": True, "stringfield": "test", "intfield": 5, "floatfield": 5.5, "arrayfield": [], "hashfield": {}})
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def issubclass_(arg1, arg2):
    """
    Determine if a class is a subclass of a second class.

    `issubclass_` is equivalent to the Python built-in ``issubclass``,
    except that it returns False instead of raising a TypeError if one
    of the arguments is not a class.

    Parameters
    ----------
    arg1 : class
        Input class. True is returned if `arg1` is a subclass of `arg2`.
    arg2 : class or tuple of classes.
        Input class. If a tuple of classes, True is returned if `arg1` is a
        subclass of any of the tuple elements.

    Returns
    -------
    out : bool
        Whether `arg1` is a subclass of `arg2` or not.

    See Also
    --------
    issubsctype, issubdtype, issctype

    Examples
    --------
    >>> np.issubclass_(np.int32, np.int)
    True
    >>> np.issubclass_(np.int32, np.float)
    False

    """
    try:
        return issubclass(arg1, arg2)
    except TypeError:
        return False
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def issubsctype(arg1, arg2):
    """
    Determine if the first argument is a subclass of the second argument.

    Parameters
    ----------
    arg1, arg2 : dtype or dtype specifier
        Data-types.

    Returns
    -------
    out : bool
        The result.

    See Also
    --------
    issctype, issubdtype,obj2sctype

    Examples
    --------
    >>> np.issubsctype('S8', str)
    True
    >>> np.issubsctype(np.array([1]), np.int)
    True
    >>> np.issubsctype(np.array([1]), np.float)
    False

    """
    return issubclass(obj2sctype(arg1), obj2sctype(arg2))
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def flatten_dtype(ndtype, flatten_base=False):
    """
    Unpack a structured data-type by collapsing nested fields and/or fields
    with a shape.

    Note that the field names are lost.

    Parameters
    ----------
    ndtype : dtype
        The datatype to collapse
    flatten_base : {False, True}, optional
        Whether to transform a field with a shape into several fields or not.

    Examples
    --------
    >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
    ...                ('block', int, (2, 3))])
    >>> np.lib._iotools.flatten_dtype(dt)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32')]
    >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True)
    [dtype('|S4'), dtype('float64'), dtype('float64'), dtype('int32'),
     dtype('int32'), dtype('int32'), dtype('int32'), dtype('int32'),
     dtype('int32')]

    """
    names = ndtype.names
    if names is None:
        if flatten_base:
            return [ndtype.base] * int(np.prod(ndtype.shape))
        return [ndtype.base]
    else:
        types = []
        for field in names:
            info = ndtype.fields[field]
            flat_dt = flatten_dtype(info[0], flatten_base)
            types.extend(flat_dt)
        return types
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:radar    作者:amoose136    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print(np.sctype2char(sctype))
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:krpcScripts    作者:jwvanderbeck    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print(np.sctype2char(sctype))
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print np.sctype2char(sctype)
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:aws-lambda-numpy    作者:vitolimandibhrata    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print np.sctype2char(sctype)
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:lambda-numba    作者:rlhotovy    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print(np.sctype2char(sctype))
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:deliver    作者:orchestor    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print(np.sctype2char(sctype))
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character
项目:reflectrpc    作者:aheck    | 项目源码 | 文件源码
def test_valid_types_in_constructor(self):
        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'int', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'bool', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'float', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'string', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'array', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'hash', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")

        try:
            RpcFunction(dummy_function, 'dummy',
                    'Dummy function', 'base64', 'Return value')
        except:
            self.fail("Constructor of RpcFunction raised unexpected exception!")
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def _set_up_aliases():
    type_pairs = [('complex_', 'cdouble'),
                  ('int0', 'intp'),
                  ('uint0', 'uintp'),
                  ('single', 'float'),
                  ('csingle', 'cfloat'),
                  ('singlecomplex', 'cfloat'),
                  ('float_', 'double'),
                  ('intc', 'int'),
                  ('uintc', 'uint'),
                  ('int_', 'long'),
                  ('uint', 'ulong'),
                  ('cfloat', 'cdouble'),
                  ('longfloat', 'longdouble'),
                  ('clongfloat', 'clongdouble'),
                  ('longcomplex', 'clongdouble'),
                  ('bool_', 'bool'),
                  ('unicode_', 'unicode'),
                  ('object_', 'object')]
    if sys.version_info[0] >= 3:
        type_pairs.extend([('bytes_', 'string'),
                           ('str_', 'unicode'),
                           ('string_', 'string')])
    else:
        type_pairs.extend([('str_', 'string'),
                           ('string_', 'string'),
                           ('bytes_', 'string')])
    for alias, t in type_pairs:
        allTypes[alias] = allTypes[t]
        sctypeDict[alias] = sctypeDict[t]
    # Remove aliases overriding python types and modules
    to_remove = ['ulong', 'object', 'unicode', 'int', 'long', 'float',
                 'complex', 'bool', 'string', 'datetime', 'timedelta']
    if sys.version_info[0] >= 3:
        # Py3K
        to_remove.append('bytes')
        to_remove.append('str')
        to_remove.remove('unicode')
        to_remove.remove('long')
    for t in to_remove:
        try:
            del allTypes[t]
            del sctypeDict[t]
        except KeyError:
            pass
项目:Alfred    作者:jkachhadia    | 项目源码 | 文件源码
def sctype2char(sctype):
    """
    Return the string representation of a scalar dtype.

    Parameters
    ----------
    sctype : scalar dtype or object
        If a scalar dtype, the corresponding string character is
        returned. If an object, `sctype2char` tries to infer its scalar type
        and then return the corresponding string character.

    Returns
    -------
    typechar : str
        The string character corresponding to the scalar type.

    Raises
    ------
    ValueError
        If `sctype` is an object for which the type can not be inferred.

    See Also
    --------
    obj2sctype, issctype, issubsctype, mintypecode

    Examples
    --------
    >>> for sctype in [np.int32, np.float, np.complex, np.string_, np.ndarray]:
    ...     print(np.sctype2char(sctype))
    l
    d
    D
    S
    O

    >>> x = np.array([1., 2-1.j])
    >>> np.sctype2char(x)
    'D'
    >>> np.sctype2char(list)
    'O'

    """
    sctype = obj2sctype(sctype)
    if sctype is None:
        raise ValueError("unrecognized type")
    return _sctype2char_dict[sctype]

# Create dictionary of casting functions that wrap sequences
# indexed by type or type character