我们从Python开源项目中,提取了以下34个代码示例,用于说明如何使用chainer.training.extensions.PrintReport()。
def main(): model = L.Classifier(CNN()) optimizer = chainer.optimizers.Adam() optimizer.setup(model) train, test = chainer.datasets.get_mnist(ndim=3) train_iter = chainer.iterators.SerialIterator(train, batch_size=100) test_iter = chainer.iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer) trainer = training.Trainer(updater, (5, 'epoch'), out='result') trainer.extend(extensions.Evaluator(test_iter, model)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy','validation/main/accuracy'])) trainer.extend(extensions.ProgressBar()) trainer.run()
def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None): if opt_name == "Adam": opt = getattr(optimizers, opt_name)() else: opt = getattr(optimizers, opt_name)(lr) opt.setup(self.model) opt.add_hook(optimizer.GradientClipping(g_clip)) updater = training.StandardUpdater(self.train_iter, opt, device=gpu) self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out=out_dir) self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu)) self.trainer.extend(extensions.dump_graph('main/loss')) self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch')) self.trainer.extend(extensions.LogReport()) self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) self.trainer.extend(extensions.ProgressBar())
def __init__(self, **kwargs): required_keys = [] optional_keys = [ 'dump_graph', 'Evaluator', 'ExponentialShift', 'LinearShift', 'LogReport', 'observe_lr', 'observe_value', 'snapshot', 'PlotReport', 'PrintReport', ] super().__init__( required_keys, optional_keys, kwargs, self.__class__.__name__)
def main(gpu_id=-1, bs=32, epoch=20, out='./result', resume=''): net = ShallowConv() model = L.Classifier(net) if gpu_id >= 0: chainer.cuda.get_device_from_id(gpu_id) model.to_gpu() optimizer = chainer.optimizers.Adam() optimizer.setup(model) train, test = chainer.datasets.get_mnist(ndim=3) train_iter = chainer.iterators.SerialIterator(train, bs) test_iter = chainer.iterators.SerialIterator( test, bs, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id) trainer = training.Trainer(updater, (epoch, 'epoch'), out=out) trainer.extend(extensions.ParameterStatistics(model.predictor)) trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id)) trainer.extend(extensions.LogReport(log_name='parameter_statistics')) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) if resume: chainer.serializers.load_npz(resume, trainer) trainer.run()
def main(gpu_id=-1, bs=32, epoch=20, out='./not_layer_result', resume=''): net = ShallowConv() model = L.Classifier(net) if gpu_id >= 0: chainer.cuda.get_device_from_id(gpu_id) model.to_gpu() optimizer = chainer.optimizers.Adam() optimizer.setup(model) train, test = chainer.datasets.get_mnist(ndim=3) train_iter = chainer.iterators.SerialIterator(train, bs) test_iter = chainer.iterators.SerialIterator(test, bs, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=gpu_id) trainer = training.Trainer(updater, (epoch, 'epoch'), out=out) trainer.extend(extensions.ParameterStatistics(model.predictor)) trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) if resume: chainer.serializers.load_npz(resume, trainer) trainer.run()
def get_trainer(updater, evaluator, epochs): trainer = training.Trainer(updater, (epochs, 'epoch'), out='result') trainer.extend(evaluator) # TODO: reduce LR -- how to update every X epochs? # trainer.extend(extensions.ExponentialShift('lr', 0.1, target=lr*0.0001)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.ProgressBar( (epochs, 'epoch'), update_interval=10)) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss'])) return trainer
def train(args): model = EmbeddingTagger(args.model, 50, 20, 30) model.setup_training(args.embed) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) train = CCGBankDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = CCGBankDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.SGD(lr=0.01) optimizer.setup(model) updater = training.StandardUpdater(train_iter, optimizer) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 5000, 'iteration' log_interval = 200, 'iteration' val_model = model.copy() trainer.extend(extensions.Evaluator(val_iter, val_model), trigger=val_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): nz = args.nz batch_size = args.batch_size epochs = args.epochs gpu = args.gpu # CIFAR-10 images in range [-1, 1] (tanh generator outputs) train, _ = datasets.get_cifar10(withlabel=False, ndim=3, scale=2) train -= 1.0 train_iter = iterators.SerialIterator(train, batch_size) z_iter = RandomNoiseIterator(GaussianNoiseGenerator(0, 1, args.nz), batch_size) optimizer_generator = optimizers.RMSprop(lr=0.00005) optimizer_critic = optimizers.RMSprop(lr=0.00005) optimizer_generator.setup(Generator()) optimizer_critic.setup(Critic()) updater = WassersteinGANUpdater( iterator=train_iter, noise_iterator=z_iter, optimizer_generator=optimizer_generator, optimizer_critic=optimizer_critic, device=gpu) trainer = training.Trainer(updater, stop_trigger=(epochs, 'epoch')) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.LogReport(trigger=(1, 'iteration'))) trainer.extend(GeneratorSample(), trigger=(1, 'epoch')) trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'critic/loss', 'critic/loss/real', 'critic/loss/fake', 'generator/loss'])) trainer.run()
def main(): unit = 1000 batchsize = 100 epoch = 20 model = L.Classifier(MLP(unit, 10)) optimizer = chainer.optimizers.Adam() optimizer.setup(model) train, test = chainer.datasets.get_mnist() train_iter = chainer.iterators.SerialIterator(train, batchsize) test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer) trainer = training.Trainer(updater, (epoch, 'epoch'), out='result') trainer.extend(extensions.Evaluator(test_iter, model)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(epoch, 'epoch')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.extend(extensions.ProgressBar()) trainer.run()
def fit(model, train, valid, device=-1, batchsize=4096, n_epoch=500, resume=None, alpha=1e-3): if device >= 0: chainer.cuda.get_device(device).use() model.to_gpu(device) optimizer = chainer.optimizers.Adam(alpha) optimizer.setup(model) # Setup iterators train_iter = chainer.iterators.SerialIterator(train, batchsize) valid_iter = chainer.iterators.SerialIterator(valid, batchsize, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=device) trainer = training.Trainer(updater, (n_epoch, 'epoch'), out='out_' + str(device)) # Setup logging, printing & saving keys = ['loss', 'rmse', 'bias', 'kld0', 'kld1'] keys += ['kldg', 'kldi', 'hypg', 'hypi'] keys += ['hypglv', 'hypilv'] reports = ['epoch'] reports += ['main/' + key for key in keys] reports += ['validation/main/rmse'] trainer.extend(TestModeEvaluator(valid_iter, model, device=device)) trainer.extend(extensions.Evaluator(valid_iter, model, device=device)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=(10, 'epoch')) trainer.extend(extensions.LogReport(trigger=(1, 'epoch'))) trainer.extend(extensions.PrintReport(reports)) trainer.extend(extensions.ProgressBar(update_interval=10)) # If previous model detected, resume if resume: print("Loading from {}".format(resume)) chainer.serializers.load_npz(resume, trainer) # Run the model trainer.run()
def pretrain_source_cnn(data, args, epochs=1000): print(":: pretraining source encoder") source_cnn = Loss(num_classes=10) if args.device >= 0: source_cnn.to_gpu() optimizer = chainer.optimizers.Adam() optimizer.setup(source_cnn) train_iterator, test_iterator = data2iterator(data, args.batchsize, multiprocess=False) # train_iterator = chainer.iterators.MultiprocessIterator(data, args.batchsize, n_processes=4) updater = chainer.training.StandardUpdater(iterator=train_iterator, optimizer=optimizer, device=args.device) trainer = chainer.training.Trainer(updater, (epochs, 'epoch') ,out=args.output) # learning rate decay # trainer.extend(extensions.ExponentialShift("alpha", rate=0.9, init=args.learning_rate, target=args.learning_rate*10E-5)) trainer.extend(extensions.Evaluator(test_iterator, source_cnn, device=args.device)) # trainer.extend(extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'), trigger=(10, "epoch")) trainer.extend(extensions.snapshot_object(optimizer.target, "source_model_epoch_{.updater.epoch}"), trigger=(epochs, "epoch")) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.extend(extensions.LogReport(trigger=(1, "epoch"))) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time'])) trainer.run() return source_cnn
def train_target_cnn(source, target, source_cnn, target_cnn, args, epochs=10000): print(":: training encoder with target domain") discriminator = Discriminator() if args.device >= 0: source_cnn.to_gpu() target_cnn.to_gpu() discriminator.to_gpu() # target_optimizer = chainer.optimizers.Adam(alpha=1.0E-5, beta1=0.5) target_optimizer = chainer.optimizers.RMSprop(lr=args.lr) # target_optimizer = chainer.optimizers.MomentumSGD(lr=1.0E-4, momentum=0.99) target_optimizer.setup(target_cnn.encoder) target_optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) # discriminator_optimizer = chainer.optimizers.Adam(alpha=1.0E-5, beta1=0.5) discriminator_optimizer = chainer.optimizers.RMSprop(lr=args.lr) # discriminator_optimizer = chainer.optimizers.MomentumSGD(lr=1.0E-4, momentum=0.99) discriminator_optimizer.setup(discriminator) discriminator_optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) source_train_iterator, source_test_iterator = data2iterator(source, args.batchsize, multiprocess=False) target_train_iterator, target_test_iterator = data2iterator(target, args.batchsize, multiprocess=False) updater = ADDAUpdater(source_train_iterator, target_train_iterator, source_cnn, target_optimizer, discriminator_optimizer, args) trainer = chainer.training.Trainer(updater, (epochs, 'epoch'), out=args.output) trainer.extend(extensions.Evaluator(target_test_iterator, target_cnn, device=args.device)) # trainer.extend(extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'), trigger=(10, "epoch")) trainer.extend(extensions.snapshot_object(target_cnn, "target_model_epoch_{.updater.epoch}"), trigger=(epochs, "epoch")) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.extend(extensions.LogReport(trigger=(1, "epoch"))) trainer.extend(extensions.PrintReport( ["epoch", "loss/discrim", "loss/encoder", "validation/main/loss", "validation/main/accuracy", "elapsed_time"])) trainer.run()
def check_train(self, gpu): outdir = tempfile.mkdtemp() print("outdir: {}".format(outdir)) n_classes = 2 batch_size = 32 devices = {'main': gpu} A = np.array([ [0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], ]).astype(np.float32) model = graph_cnn.GraphCNN(A, n_out=n_classes) optimizer = optimizers.Adam(alpha=1e-4) optimizer.setup(model) train_dataset = EasyDataset(train=True, n_classes=n_classes) train_iter = chainer.iterators.MultiprocessIterator( train_dataset, batch_size) updater = ParallelUpdater(train_iter, optimizer, devices=devices) trainer = chainer.training.Trainer(updater, (10, 'epoch'), out=outdir) trainer.extend(extensions.LogReport(trigger=(1, 'epoch'))) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'main/loss', 'main/accuracy'])) trainer.extend(extensions.ProgressBar()) trainer.run()
def fit(self, X, y=None, **kwargs): """If hyper parameters are set to None, then instance's variable is used, this functionality is used Grid search with `set_params` method. Also if instance's variable is not set, _default_hyperparam is used. Usage: model.fit(train_dataset) or model.fit(X, y) Args: train: training dataset, assumes chainer's dataset class test: test dataset for evaluation, assumes chainer's dataset class batchsize: batchsize for both training and evaluation iterator_class: iterator class used for this training, currently assumes SerialIterator or MultiProcessIterator optimizer: optimizer instance to update parameter epoch: training epoch out: directory path to save the result snapshot_frequency (int): snapshot frequency in epoch. Negative value indicates not to take snapshot. dump_graph: Save computational graph info or not, default is False. log_report: Enable LogReport or not plot_report: Enable PlotReport or not print_report: Enable PrintReport or not progress_report: Enable ProgressReport or not resume: specify trainer saved path to resume training. """ kwargs = self.filter_sk_params(self.fit_core, kwargs) return self.fit_core(X, y, **kwargs)
def train_task(args, train_name, model, epoch_num, train_dataset, test_dataset_dict, batch_size): optimizer = optimizers.SGD() optimizer.setup(model) train_iter = iterators.SerialIterator(train_dataset, batch_size) test_iter_dict = {name: iterators.SerialIterator( test_dataset, batch_size, repeat=False, shuffle=False) for name, test_dataset in test_dataset_dict.items()} updater = training.StandardUpdater(train_iter, optimizer) trainer = training.Trainer(updater, (epoch_num, 'epoch'), out=args.out) for name, test_iter in test_iter_dict.items(): trainer.extend(extensions.Evaluator(test_iter, model), name) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss'] + [test+'/main/loss' for test in test_dataset_dict.keys()] + ['main/accuracy'] + [test+'/main/accuracy' for test in test_dataset_dict.keys()])) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.PlotReport( [test+"/main/accuracy" for test in test_dataset_dict.keys()], file_name=train_name+".png")) trainer.run()
def main(config_file): with open(config_file) as fp: conf = json.load(fp) fe_conf = conf['feature_extractor'] cl_conf = conf['classifier'] fe_class = getattr(cnn_feature_extractors, fe_conf['model']) feature_extractor = fe_class(n_classes=fe_conf['n_classes'], n_base_units=fe_conf['n_base_units']) chainer.serializers.load_npz(fe_conf['out_file'], feature_extractor) model = classifiers.MLPClassifier(cl_conf['n_classes'], feature_extractor) optimizer = chainer.optimizers.Adam() optimizer.setup(model) device = cl_conf.get('device', -1) train_dataset = feature_dataset(os.path.join(cl_conf['dataset_path'], 'train'), model) train_iter = chainer.iterators.SerialIterator(train_dataset, conf.get('batch_size', 1)) updater = chainer.training.StandardUpdater(train_iter, optimizer, device=device) trainer = chainer.training.Trainer(updater, (cl_conf['epoch'], 'epoch'), out='out_re') trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.ProgressBar(update_interval=10)) test_dataset_path = os.path.join(cl_conf['dataset_path'], 'test') if os.path.exists(test_dataset_path): test_dataset = feature_dataset(test_dataset_path, model) test_iter = chainer.iterators.SerialIterator(test_dataset, 10, repeat=False, shuffle=False) trainer.extend(extensions.Evaluator(test_iter, model, device=device)) trainer.extend(extensions.PrintReport([ 'epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy' ])) else: trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy'])) trainer.run() chainer.serializers.save_npz(cl_conf['out_file'], model)
def main(config_file): with open(config_file) as fp: conf = json.load(fp)['feature_extractor'] model_class = getattr(cnn_feature_extractors, conf['model']) model = model_class(conf['n_classes'], conf['n_base_units']) resume_file = conf['out_file'] + '.to_resume' if os.path.exists(resume_file): chainer.serializers.load_npz(resume_file, model) optimizer = chainer.optimizers.Adam() optimizer.setup(model) device = conf.get('device', -1) train_dataset = create_dataset(os.path.join(conf['dataset_path'], 'train')) train_iter = chainer.iterators.SerialIterator(train_dataset, conf.get('batch_size', 10)) updater = chainer.training.StandardUpdater(train_iter, optimizer, device=device) trainer = chainer.training.Trainer(updater, (conf['epoch'], 'epoch'), out='out') trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.LogReport()) trainer.extend(extensions.ProgressBar(update_interval=10)) test_dataset_path = os.path.join(conf['dataset_path'], 'test') if os.path.exists(test_dataset_path): test_dataset = create_dataset(test_dataset_path) test_iter = chainer.iterators.SerialIterator(test_dataset, 20, repeat=False, shuffle=False) trainer.extend(extensions.Evaluator(test_iter, model, device=device)) trainer.extend(extensions.PrintReport([ 'epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy' ])) else: trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy'])) trainer.run() model = model.to_cpu() chainer.serializers.save_npz(conf['out_file'], model)
def create_trainer( config, project_path, updater, model, eval_func, iterator_test, iterator_train_varidation, loss_names, converter=chainer.dataset.convert.concat_examples, ): # type: (TrainConfig, str, any, typing.Dict, any, any, any, any, any) -> any def _make_evaluator(iterator): return utility.chainer_utility.NoVariableEvaluator( iterator, target=model, converter=converter, eval_func=eval_func, device=config.gpu, ) trainer = chainer.training.Trainer(updater, out=project_path) log_trigger = (config.log_iteration, 'iteration') save_trigger = (config.save_iteration, 'iteration') eval_test_name = 'eval/test' eval_train_name = 'eval/train' snapshot = extensions.snapshot_object(model['main'], '{.updater.iteration}.model') trainer.extend(snapshot, trigger=save_trigger) trainer.extend(extensions.dump_graph('main/' + loss_names[0], out_name='main.dot')) trainer.extend(_make_evaluator(iterator_test), name=eval_test_name, trigger=log_trigger) trainer.extend(_make_evaluator(iterator_train_varidation), name=eval_train_name, trigger=log_trigger) report_target = [] for evaluator_name in ['', eval_test_name + '/', eval_train_name + '/']: for model_name in ['main/']: for loss_name in loss_names: report_target.append(evaluator_name + model_name + loss_name) trainer.extend(extensions.LogReport(trigger=log_trigger, log_name="log.txt")) trainer.extend(extensions.PrintReport(report_target)) return trainer
def train(args): model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print 'Load model from', args.initmodel chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print 'Load pretrained word embeddings from', args.pretrained model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() train = LSTMParserDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMParserDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.Adam(beta2=0.9) # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator(val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/tagging_accuracy', 'main/tagging_loss', 'main/parsing_accuracy', 'main/parsing_loss', 'validation/main/tagging_accuracy', 'validation/main/parsing_accuracy' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() train = LSTMTaggerDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMTaggerDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 2000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = BiaffineJaLSTMParser(args.model, args.word_emb_size, args.char_emb_size, args.nlayers, args.hidden_dim, args.dep_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() train = LSTMParserDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMParserDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.Adam(beta2=0.9) # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(2e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.ExponentialShift( "eps", .75, 2e-3), trigger=(2500, 'iteration')) trainer.extend(extensions.Evaluator( val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/tagging_accuracy', 'main/tagging_loss', 'main/parsing_accuracy', 'main/parsing_loss', 'validation/main/tagging_accuracy', 'validation/main/parsing_accuracy' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = JaLSTMParser(args.model, args.word_emb_size, args.char_emb_size, args.nlayers, args.hidden_dim, args.relu_dim, args.dep_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) train = LSTMParserDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMParserDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.Adam(beta2=0.9) # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, converter), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/tagging_loss', 'main/tagging_accuracy', 'main/tagging_loss', 'main/parsing_accuracy', 'main/parsing_loss', 'validation/main/tagging_loss', 'validation/main/tagging_accuracy', 'validation/main/parsing_loss', 'validation/main/parsing_accuracy' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = LSTMTagger(args.model, args.word_emb_size, args.char_emb_size, args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) train = LSTMTaggerDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMTaggerDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, converter), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = LSTMTagger(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print 'Load model from', args.initmodel chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print 'Load pretrained word embeddings from', args.pretrained model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() train = LSTMTaggerDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMTaggerDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 2000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = LSTMParser(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.elu_dim, args.dep_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() train = LSTMParserDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = LSTMParserDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.Adam(beta2=0.9) # optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) # optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator(val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/tagging_accuracy', 'main/tagging_loss', 'main/parsing_accuracy', 'main/parsing_loss', 'validation/main/tagging_accuracy', 'validation/main/parsing_accuracy' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = JaCCGEmbeddingTagger(args.model, args.word_emb_size, args.char_emb_size) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) train = JaCCGTaggerDataset(args.model, args.train) train_iter = chainer.iterators.SerialIterator(train, args.batchsize) val = JaCCGTaggerDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.AdaGrad() optimizer.setup(model) # optimizer.add_hook(WeightDecay(1e-8)) my_converter = lambda x, dev: convert.concat_examples(x, dev, (None,-1,None,None)) updater = training.StandardUpdater(train_iter, optimizer, converter=my_converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, my_converter), trigger=val_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def train(args): model = PeepHoleLSTMTagger(args.model, args.word_emb_size, args.afix_emb_size, args.nlayers, args.hidden_dim, args.relu_dim, args.dropout_ratio) with open(args.model + "/params", "w") as f: log(args, f) if args.initmodel: print('Load model from', args.initmodel) chainer.serializers.load_npz(args.initmodel, model) if args.pretrained: print('Load pretrained word embeddings from', args.pretrained) model.load_pretrained_embeddings(args.pretrained) if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() model.to_gpu() converter = lambda x, device: \ concat_examples(x, device=device, padding=-1) train = LSTMTaggerDataset(args.model, args.train) train_iter = SerialIterator(train, args.batchsize) val = LSTMTaggerDataset(args.model, args.val) val_iter = chainer.iterators.SerialIterator( val, args.batchsize, repeat=False, shuffle=False) optimizer = chainer.optimizers.MomentumSGD(momentum=0.7) optimizer.setup(model) optimizer.add_hook(WeightDecay(1e-6)) optimizer.add_hook(GradientClipping(5.)) updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu, converter=converter) trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model) val_interval = 1000, 'iteration' log_interval = 200, 'iteration' eval_model = model.copy() eval_model.train = False trainer.extend(extensions.Evaluator( val_iter, eval_model, converter, device=args.gpu), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def start(self): """ Train pose net. """ # set random seed. if self.seed is not None: random.seed(self.seed) np.random.seed(self.seed) if self.gpu >= 0: chainer.cuda.cupy.random.seed(self.seed) # initialize model to train. model = AlexNet(self.Nj, self.use_visibility) if self.resume_model: serializers.load_npz(self.resume_model, model) # prepare gpu. if self.gpu >= 0: chainer.cuda.get_device(self.gpu).use() model.to_gpu() # load the datasets. train = PoseDataset(self.train, data_augmentation=self.data_augmentation) val = PoseDataset(self.val, data_augmentation=False) # training/validation iterators. train_iter = chainer.iterators.MultiprocessIterator( train, self.batchsize) val_iter = chainer.iterators.MultiprocessIterator( val, self.batchsize, repeat=False, shuffle=False) # set up an optimizer. optimizer = self._get_optimizer() optimizer.setup(model) if self.resume_opt: chainer.serializers.load_npz(self.resume_opt, optimizer) # set up a trainer. updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu) trainer = training.Trainer( updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer')) # standard trainer settings trainer.extend(extensions.dump_graph('main/loss')) val_interval = (10, 'epoch') trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval) # save parameters and optimization state per validation step resume_interval = (self.epoch/10, 'epoch') trainer.extend(extensions.snapshot_object( model, "epoch-{.updater.epoch}.model"), trigger=resume_interval) trainer.extend(extensions.snapshot_object( optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval) trainer.extend(extensions.snapshot( filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval) # show log log_interval = (10, "iteration") trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) # start training if self.resume: chainer.serializers.load_npz(self.resume, trainer) trainer.run()
def train(args): time_start = timer() if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() cuda.check_cuda_available() if args.path_vocab == '': vocab = create_from_dir(args.path_corpus) else: vocab = Vocabulary() vocab.load(args.path_vocab) logger.info("loaded vocabulary") if args.context_representation != 'word': # for deps or ner context representation, we need a new context vocab for NS or HSM loss function. vocab_context = create_from_annotated_dir(args.path_corpus, representation=args.context_representation) else : vocab_context = vocab loss_func = get_loss_func(args, vocab_context) model = get_model(args, loss_func, vocab) if args.gpu >= 0: model.to_gpu() logger.debug("model sent to gpu") optimizer = chainer.optimizers.Adam() optimizer.setup(model) if os.path.isfile(args.path_corpus): train, val = get_data(args.path_corpus, vocab) if args.test: train = train[:100] val = val[:100] train_iter = WindowIterator(train, args.window, args.batchsize) val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False) else: train_iter = DirWindowIterator(path=args.path_corpus, vocab=vocab, window_size=args.window, batch_size=args.batchsize) updater = training.StandardUpdater(train_iter, optimizer, converter=convert, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.path_out) if os.path.isfile(args.path_corpus): trainer.extend(extensions.Evaluator(val_iter, model, converter=convert, device=args.gpu)) trainer.extend(extensions.LogReport()) if os.path.isfile(args.path_corpus): trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss', 'elapsed_time'])) else: trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'elapsed_time'])) # trainer.extend(extensions.ProgressBar()) trainer.run() model = create_model(args, model, vocab) time_end = timer() model.metadata["execution_time"] = time_end - time_start return model
def main(options): #load the config params gpu = options['gpu'] data_path = options['path_dataset'] embeddings_path = options['path_vectors'] n_epoch = options['epochs'] batch_size = options['batchsize'] test = options['test'] embed_dim = options['embed_dim'] freeze = options['freeze_embeddings'] distance_embed_dim = options['distance_embed_dim'] #load the data data_processor = DataProcessor(data_path) data_processor.prepare_dataset() train_data = data_processor.train_data test_data = data_processor.test_data vocab = data_processor.vocab cnn = CNN(n_vocab=len(vocab), input_channel=1, output_channel=100, n_label=19, embed_dim=embed_dim, position_dims=distance_embed_dim, freeze=freeze) cnn.load_embeddings(embeddings_path, data_processor.vocab) model = L.Classifier(cnn) #use GPU if flag is set if gpu >= 0: model.to_gpu() #setup the optimizer optimizer = O.Adam() optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(train_data, batch_size) test_iter = chainer.iterators.SerialIterator(test_data, batch_size,repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, converter=convert.concat_examples, device=gpu) trainer = training.Trainer(updater, (n_epoch, 'epoch')) # Evaluation test_model = model.copy() test_model.predictor.train = False trainer.extend(extensions.Evaluator(test_iter, test_model, device=gpu, converter=convert.concat_examples)) trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy'])) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def main(options): #load the config params gpu = options['gpu'] data_path = options['path_dataset'] embeddings_path = options['path_vectors'] n_epoch = options['epochs'] batchsize = options['batchsize'] test = options['test'] embed_dim = options['embed_dim'] freeze = options['freeze_embeddings'] #load the data data_processor = DataProcessor(data_path, test) data_processor.prepare_dataset() train_data = data_processor.train_data dev_data = data_processor.dev_data test_data = data_processor.test_data vocab = data_processor.vocab cnn = CNN(n_vocab=len(vocab), input_channel=1, output_channel=10, n_label=2, embed_dim=embed_dim, freeze=freeze) cnn.load_embeddings(embeddings_path, data_processor.vocab) model = L.Classifier(cnn) if gpu >= 0: model.to_gpu() #setup the optimizer optimizer = O.Adam() optimizer.setup(model) train_iter = chainer.iterators.SerialIterator(train_data, batchsize) dev_iter = chainer.iterators.SerialIterator(dev_data, batchsize,repeat=False, shuffle=False) test_iter = chainer.iterators.SerialIterator(test_data, batchsize,repeat=False, shuffle=False) batch1 = train_iter.next() batch2 = dev_iter.next() updater = training.StandardUpdater(train_iter, optimizer, converter=util.concat_examples, device=gpu) trainer = training.Trainer(updater, (n_epoch, 'epoch')) # Evaluation eval_model = model.copy() eval_model.predictor.train = False trainer.extend(extensions.Evaluator(dev_iter, eval_model, device=gpu, converter=util.concat_examples)) test_model = model.copy() test_model.predictor.train = False trainer.extend(extensions.LogReport()) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy'])) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.run()
def __init__(self, folder, chain, train, test, batchsize=500, resume=True, gpu=0, nepoch=1, reports=[]): self.reports = reports self.nepoch = nepoch self.folder = folder self.chain = chain self.gpu = gpu if self.gpu >= 0: chainer.cuda.get_device(gpu).use() chain.to_gpu(gpu) self.eval_chain = eval_chain = chain.copy() self.chain.test = False self.eval_chain.test = True self.testset = test if not os.path.exists(folder): os.makedirs(folder) train_iter = chainer.iterators.SerialIterator(train, batchsize, shuffle=True) test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, chain.optimizer, device=gpu) trainer = training.Trainer(updater, (nepoch, 'epoch'), out=folder) # trainer.extend(TrainingModeSwitch(chain)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.Evaluator(test_iter, eval_chain, device=gpu), trigger=(1,'epoch')) trainer.extend(extensions.snapshot_object( chain, 'chain_snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch')) trainer.extend(extensions.snapshot( filename='snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch')) trainer.extend(extensions.LogReport(trigger=(1,'epoch')), trigger=(1,'iteration')) trainer.extend(extensions.PrintReport( ['epoch']+reports), trigger=IntervalTrigger(1,'epoch')) self.trainer = trainer if resume: #if resumeFrom is not None: # trainerFile = os.path.join(resumeFrom[0],'snapshot_epoch_{:06}'.format(resumeFrom[1])) # S.load_npz(trainerFile, trainer) i = 1 trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i)) while i <= nepoch and os.path.isfile(trainerFile): i = i + 1 trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i)) i = i - 1 trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i)) if i >= 0 and os.path.isfile(trainerFile): S.load_npz(trainerFile, trainer)
def create_trainer( config: TrainConfig, project_path: str, updater, model: typing.Dict, eval_func, iterator_test, iterator_train_eval, loss_names, converter=chainer.dataset.convert.concat_examples, log_name='log.txt', ): trainer = chainer.training.Trainer(updater, out=project_path) log_trigger = (config.log_iteration, 'iteration') save_trigger = (config.save_iteration, 'iteration') eval_test_name = 'eval/test' eval_train_name = 'eval/train' snapshot = extensions.snapshot_object(model['encoder'], 'encoder{.updater.iteration}.model') trainer.extend(snapshot, trigger=save_trigger) snapshot = extensions.snapshot_object(model['generator'], 'generator{.updater.iteration}.model') trainer.extend(snapshot, trigger=save_trigger) snapshot = extensions.snapshot_object(model['mismatch_discriminator'], 'mismatch_discriminator{.updater.iteration}.model') trainer.extend(snapshot, trigger=save_trigger) trainer.extend(utility.chainer.dump_graph([ 'encoder/' + loss_names[0], 'generator/' + loss_names[0], 'mismatch_discriminator/' + loss_names[0], ], out_name='main.dot')) def _make_evaluator(iterator): return utility.chainer.NoVariableEvaluator( iterator, target=model, converter=converter, eval_func=eval_func, device=config.gpu, ) trainer.extend(_make_evaluator(iterator_test), name=eval_test_name, trigger=log_trigger) trainer.extend(_make_evaluator(iterator_train_eval), name=eval_train_name, trigger=log_trigger) report_target = [] for evaluator_name in ['', eval_test_name + '/', eval_train_name + '/']: for model_name in [s + '/' for s in model.keys()]: for loss_name in set(loss_names): report_target.append(evaluator_name + model_name + loss_name) trainer.extend(extensions.LogReport(trigger=log_trigger, log_name=log_name)) trainer.extend(extensions.PrintReport(report_target)) return trainer