Python chainer.training.extensions 模块,snapshot() 实例源码

我们从Python开源项目中,提取了以下13个代码示例,用于说明如何使用chainer.training.extensions.snapshot()

项目:NlpUtil    作者:trtd56    | 项目源码 | 文件源码
def set_trainer(self, out_dir, gpu, n_epoch, g_clip, opt_name, lr=None):
        if opt_name == "Adam":
            opt = getattr(optimizers, opt_name)()
        else:
            opt = getattr(optimizers, opt_name)(lr)
        opt.setup(self.model)
        opt.add_hook(optimizer.GradientClipping(g_clip))

        updater = training.StandardUpdater(self.train_iter, opt, device=gpu)
        self.trainer = training.Trainer(updater, (n_epoch, 'epoch'), out=out_dir)
        self.trainer.extend(extensions.Evaluator(self.test_iter, self.model, device=gpu))
        self.trainer.extend(extensions.dump_graph('main/loss'))
        self.trainer.extend(extensions.snapshot(), trigger=(n_epoch, 'epoch'))
        self.trainer.extend(extensions.LogReport())
        self.trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'],
                                                   'epoch', file_name='loss.png'))
        self.trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'],
                                                   'epoch', file_name='accuracy.png'))
        self.trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'validation/main/loss',
                                                    'main/accuracy', 'validation/main/accuracy',
                                                    'elapsed_time']))
        self.trainer.extend(extensions.ProgressBar())
项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def __init__(self, **kwargs):
        required_keys = []
        optional_keys = [
            'dump_graph',
            'Evaluator',
            'ExponentialShift',
            'LinearShift',
            'LogReport',
            'observe_lr',
            'observe_value',
            'snapshot',
            'PlotReport',
            'PrintReport',
        ]
        super().__init__(
            required_keys, optional_keys, kwargs, self.__class__.__name__)
项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def __init__(self, **kwargs):
        required_keys = []
        optional_keys = [
            'dump_graph',
            'Evaluator',
            'ExponentialShift',
            'LinearShift',
            'LogReport',
            'observe_lr',
            'observe_value',
            'snapshot',
            'PlotReport',
            'PrintReport',
        ]
        super().__init__(
            required_keys, optional_keys, kwargs, self.__class__.__name__)
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = EmbeddingTagger(args.model, 50, 20, 30)
    model.setup_training(args.embed)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    train = CCGBankDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = CCGBankDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.SGD(lr=0.01)
    optimizer.setup(model)
    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 5000, 'iteration'
    log_interval = 200, 'iteration'
    val_model = model.copy()

    trainer.extend(extensions.Evaluator(val_iter, val_model), trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:chainer-examples    作者:nocotan    | 项目源码 | 文件源码
def main():
    unit = 1000
    batchsize = 100
    epoch = 20

    model = L.Classifier(MLP(unit, 10))

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(model)

    train, test = chainer.datasets.get_mnist()
    train_iter = chainer.iterators.SerialIterator(train, batchsize)
    test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False)

    updater = training.StandardUpdater(train_iter, optimizer)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out='result')

    trainer.extend(extensions.Evaluator(test_iter, model))
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=(epoch, 'epoch'))
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))
    trainer.extend(extensions.ProgressBar())

    trainer.run()
项目:vfm    作者:cemoody    | 项目源码 | 文件源码
def fit(model, train, valid, device=-1, batchsize=4096, n_epoch=500,
        resume=None, alpha=1e-3):
    if device >= 0:
        chainer.cuda.get_device(device).use()
        model.to_gpu(device)
    optimizer = chainer.optimizers.Adam(alpha)
    optimizer.setup(model)

    # Setup iterators
    train_iter = chainer.iterators.SerialIterator(train, batchsize)
    valid_iter = chainer.iterators.SerialIterator(valid, batchsize,
                                                  repeat=False, shuffle=False)
    updater = training.StandardUpdater(train_iter, optimizer, device=device)
    trainer = training.Trainer(updater, (n_epoch, 'epoch'),
                               out='out_' + str(device))

    # Setup logging, printing & saving
    keys = ['loss', 'rmse', 'bias', 'kld0', 'kld1']
    keys += ['kldg', 'kldi', 'hypg', 'hypi']
    keys += ['hypglv', 'hypilv']
    reports = ['epoch']
    reports += ['main/' + key for key in keys]
    reports += ['validation/main/rmse']
    trainer.extend(TestModeEvaluator(valid_iter, model, device=device))
    trainer.extend(extensions.Evaluator(valid_iter, model, device=device))
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=(10, 'epoch'))
    trainer.extend(extensions.LogReport(trigger=(1, 'epoch')))
    trainer.extend(extensions.PrintReport(reports))
    trainer.extend(extensions.ProgressBar(update_interval=10))

    # If previous model detected, resume
    if resume:
        print("Loading from {}".format(resume))
        chainer.serializers.load_npz(resume, trainer)

    # Run the model
    trainer.run()
项目:chainer-ADDA    作者:pfnet-research    | 项目源码 | 文件源码
def pretrain_source_cnn(data, args, epochs=1000):
    print(":: pretraining source encoder")
    source_cnn = Loss(num_classes=10)
    if args.device >= 0:
        source_cnn.to_gpu()

    optimizer = chainer.optimizers.Adam()
    optimizer.setup(source_cnn)

    train_iterator, test_iterator = data2iterator(data, args.batchsize, multiprocess=False)

    # train_iterator = chainer.iterators.MultiprocessIterator(data, args.batchsize, n_processes=4)

    updater = chainer.training.StandardUpdater(iterator=train_iterator, optimizer=optimizer, device=args.device)
    trainer = chainer.training.Trainer(updater, (epochs, 'epoch') ,out=args.output)

    # learning rate decay
    # trainer.extend(extensions.ExponentialShift("alpha", rate=0.9, init=args.learning_rate, target=args.learning_rate*10E-5))

    trainer.extend(extensions.Evaluator(test_iterator, source_cnn, device=args.device))
    # trainer.extend(extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'), trigger=(10, "epoch"))
    trainer.extend(extensions.snapshot_object(optimizer.target, "source_model_epoch_{.updater.epoch}"), trigger=(epochs, "epoch"))

    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(extensions.LogReport(trigger=(1, "epoch")))
    trainer.extend(extensions.PrintReport(
        ['epoch', 'main/loss', 'validation/main/loss',
         'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

    trainer.run()

    return source_cnn
项目:chainer-ADDA    作者:pfnet-research    | 项目源码 | 文件源码
def train_target_cnn(source, target, source_cnn, target_cnn, args, epochs=10000):
    print(":: training encoder with target domain")
    discriminator = Discriminator()

    if args.device >= 0:
        source_cnn.to_gpu()
        target_cnn.to_gpu()
        discriminator.to_gpu()

    # target_optimizer = chainer.optimizers.Adam(alpha=1.0E-5, beta1=0.5)
    target_optimizer = chainer.optimizers.RMSprop(lr=args.lr)
    # target_optimizer = chainer.optimizers.MomentumSGD(lr=1.0E-4, momentum=0.99)
    target_optimizer.setup(target_cnn.encoder)
    target_optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay))

    # discriminator_optimizer = chainer.optimizers.Adam(alpha=1.0E-5, beta1=0.5)
    discriminator_optimizer = chainer.optimizers.RMSprop(lr=args.lr)
    # discriminator_optimizer = chainer.optimizers.MomentumSGD(lr=1.0E-4, momentum=0.99)
    discriminator_optimizer.setup(discriminator)
    discriminator_optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay))

    source_train_iterator, source_test_iterator = data2iterator(source, args.batchsize, multiprocess=False)
    target_train_iterator, target_test_iterator = data2iterator(target, args.batchsize, multiprocess=False)

    updater = ADDAUpdater(source_train_iterator, target_train_iterator, source_cnn, target_optimizer, discriminator_optimizer, args)

    trainer = chainer.training.Trainer(updater, (epochs, 'epoch'), out=args.output)

    trainer.extend(extensions.Evaluator(target_test_iterator, target_cnn, device=args.device))
    # trainer.extend(extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'), trigger=(10, "epoch"))
    trainer.extend(extensions.snapshot_object(target_cnn, "target_model_epoch_{.updater.epoch}"), trigger=(epochs, "epoch"))

    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(extensions.LogReport(trigger=(1, "epoch")))
    trainer.extend(extensions.PrintReport(
        ["epoch", "loss/discrim", "loss/encoder",
         "validation/main/loss", "validation/main/accuracy", "elapsed_time"]))

    trainer.run()
项目:Semantic-Segmentation-using-Adversarial-Networks    作者:oyam    | 项目源码 | 文件源码
def parse_args(generators, discriminators, updaters):
    parser = argparse.ArgumentParser(description='Semantic Segmentation using Adversarial Networks')
    parser.add_argument('--generator', choices=generators.keys(), default='fcn32s',
                        help='Generator(segmentor) architecture')
    parser.add_argument('--discriminator', choices=discriminators.keys(), default='largefov',
                        help='Discriminator architecture')
    parser.add_argument('--updater', choices=updaters.keys(), default='gan',
                        help='Updater')
    parser.add_argument('--initgen_path', default='pretrained_model/vgg16.npz',
                        help='Pretrained model of generator')
    parser.add_argument('--initdis_path', default=None,
                        help='Pretrained model of discriminator')
    parser.add_argument('--batchsize', '-b', type=int, default=1,
                        help='Number of images in each mini-batch')
    parser.add_argument('--iteration', '-i', type=int, default=100000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu', '-g', type=int, default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out', '-o', default='snapshot',
                        help='Directory to output the result')
    parser.add_argument('--resume', '-r', default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--evaluate_interval', type=int, default=1000,
                        help='Interval of evaluation')
    parser.add_argument('--snapshot_interval', type=int, default=10000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval', type=int, default=10,
                        help='Interval of displaying log to console')
    return parser.parse_args()
项目:chainer_sklearn    作者:corochann    | 项目源码 | 文件源码
def fit(self, X, y=None, **kwargs):
        """If hyper parameters are set to None, then instance's variable is used,
        this functionality is used Grid search with `set_params` method.
        Also if instance's variable is not set, _default_hyperparam is used. 

        Usage: model.fit(train_dataset) or model.fit(X, y)

        Args:
            train: training dataset, assumes chainer's dataset class 
            test: test dataset for evaluation, assumes chainer's dataset class
            batchsize: batchsize for both training and evaluation
            iterator_class: iterator class used for this training, 
                            currently assumes SerialIterator or MultiProcessIterator
            optimizer: optimizer instance to update parameter
            epoch: training epoch
            out: directory path to save the result
            snapshot_frequency (int): snapshot frequency in epoch. 
                                Negative value indicates not to take snapshot.
            dump_graph: Save computational graph info or not, default is False.
            log_report: Enable LogReport or not
            plot_report: Enable PlotReport or not
            print_report: Enable PrintReport or not
            progress_report: Enable ProgressReport or not
            resume: specify trainer saved path to resume training.

        """
        kwargs = self.filter_sk_params(self.fit_core, kwargs)
        return self.fit_core(X, y, **kwargs)
项目:depccg    作者:masashi-y    | 项目源码 | 文件源码
def train(args):
    model = JaCCGEmbeddingTagger(args.model,
                args.word_emb_size, args.char_emb_size)
    if args.initmodel:
        print('Load model from', args.initmodel)
        chainer.serializers.load_npz(args.initmodel, model)

    if args.pretrained:
        print('Load pretrained word embeddings from', args.pretrained)
        model.load_pretrained_embeddings(args.pretrained)

    train = JaCCGTaggerDataset(args.model, args.train)
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    val = JaCCGTaggerDataset(args.model, args.val)
    val_iter = chainer.iterators.SerialIterator(
            val, args.batchsize, repeat=False, shuffle=False)
    optimizer = chainer.optimizers.AdaGrad()
    optimizer.setup(model)
    # optimizer.add_hook(WeightDecay(1e-8))
    my_converter = lambda x, dev: convert.concat_examples(x, dev, (None,-1,None,None))
    updater = training.StandardUpdater(train_iter, optimizer, converter=my_converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), args.model)

    val_interval = 1000, 'iteration'
    log_interval = 200, 'iteration'

    eval_model = model.copy()
    eval_model.train = False

    trainer.extend(extensions.Evaluator(
        val_iter, eval_model, my_converter), trigger=val_interval)
    trainer.extend(extensions.dump_graph('main/loss'))
    trainer.extend(extensions.snapshot(), trigger=val_interval)
    trainer.extend(extensions.snapshot_object(
        model, 'model_iter_{.updater.iteration}'), trigger=val_interval)
    trainer.extend(extensions.LogReport(trigger=log_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'main/loss', 'validation/main/loss',
        'main/accuracy', 'validation/main/accuracy',
    ]), trigger=log_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.run()
项目:DeepPoseComparison    作者:ynaka81    | 项目源码 | 文件源码
def start(self):
        """ Train pose net. """
        # set random seed.
        if self.seed is not None:
            random.seed(self.seed)
            np.random.seed(self.seed)
            if self.gpu >= 0:
                chainer.cuda.cupy.random.seed(self.seed)
        # initialize model to train.
        model = AlexNet(self.Nj, self.use_visibility)
        if self.resume_model:
            serializers.load_npz(self.resume_model, model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(self.gpu).use()
            model.to_gpu()
        # load the datasets.
        train = PoseDataset(self.train, data_augmentation=self.data_augmentation)
        val = PoseDataset(self.val, data_augmentation=False)
        # training/validation iterators.
        train_iter = chainer.iterators.MultiprocessIterator(
            train, self.batchsize)
        val_iter = chainer.iterators.MultiprocessIterator(
            val, self.batchsize, repeat=False, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer()
        optimizer.setup(model)
        if self.resume_opt:
            chainer.serializers.load_npz(self.resume_opt, optimizer)
        # set up a trainer.
        updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
        trainer = training.Trainer(
            updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
        # standard trainer settings
        trainer.extend(extensions.dump_graph('main/loss'))
        val_interval = (10, 'epoch')
        trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
        # save parameters and optimization state per validation step
        resume_interval = (self.epoch/10, 'epoch')
        trainer.extend(extensions.snapshot_object(
            model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
        trainer.extend(extensions.snapshot_object(
            optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
        trainer.extend(extensions.snapshot(
            filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
        # show log
        log_interval = (10, "iteration")
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        # start training
        if self.resume:
            chainer.serializers.load_npz(self.resume, trainer)
        trainer.run()
项目:ddnn    作者:kunglab    | 项目源码 | 文件源码
def __init__(self, folder, chain, train, test, batchsize=500, resume=True, gpu=0, nepoch=1, reports=[]):
        self.reports = reports
        self.nepoch = nepoch
        self.folder = folder
        self.chain = chain
        self.gpu = gpu

        if self.gpu >= 0:
            chainer.cuda.get_device(gpu).use()
            chain.to_gpu(gpu)
        self.eval_chain = eval_chain = chain.copy()
        self.chain.test = False
        self.eval_chain.test = True
        self.testset = test

        if not os.path.exists(folder):
            os.makedirs(folder)

        train_iter = chainer.iterators.SerialIterator(train, batchsize, shuffle=True)
        test_iter = chainer.iterators.SerialIterator(test, batchsize,
                                                     repeat=False, shuffle=False)

        updater = training.StandardUpdater(train_iter, chain.optimizer, device=gpu)
        trainer = training.Trainer(updater, (nepoch, 'epoch'), out=folder)
        # trainer.extend(TrainingModeSwitch(chain))
        trainer.extend(extensions.dump_graph('main/loss'))
        trainer.extend(extensions.Evaluator(test_iter, eval_chain, device=gpu), trigger=(1,'epoch'))
        trainer.extend(extensions.snapshot_object(
            chain, 'chain_snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
        trainer.extend(extensions.snapshot(
            filename='snapshot_epoch_{.updater.epoch:06}'), trigger=(1,'epoch'))
        trainer.extend(extensions.LogReport(trigger=(1,'epoch')), trigger=(1,'iteration'))
        trainer.extend(extensions.PrintReport(
            ['epoch']+reports), trigger=IntervalTrigger(1,'epoch'))

        self.trainer = trainer

        if resume:
            #if resumeFrom is not None:
            #    trainerFile = os.path.join(resumeFrom[0],'snapshot_epoch_{:06}'.format(resumeFrom[1]))
            #    S.load_npz(trainerFile, trainer)
            i = 1
            trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            while i <= nepoch and os.path.isfile(trainerFile):
                i = i + 1
                trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            i = i - 1
            trainerFile = os.path.join(folder,'snapshot_epoch_{:06}'.format(i))
            if i >= 0 and os.path.isfile(trainerFile):
                S.load_npz(trainerFile, trainer)