Python chainer.training.extensions 模块,observe_lr() 实例源码

我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用chainer.training.extensions.observe_lr()

项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def __init__(self, **kwargs):
        required_keys = []
        optional_keys = [
            'dump_graph',
            'Evaluator',
            'ExponentialShift',
            'LinearShift',
            'LogReport',
            'observe_lr',
            'observe_value',
            'snapshot',
            'PlotReport',
            'PrintReport',
        ]
        super().__init__(
            required_keys, optional_keys, kwargs, self.__class__.__name__)
项目:chainer-pspnet    作者:mitmul    | 项目源码 | 文件源码
def __init__(self, **kwargs):
        required_keys = []
        optional_keys = [
            'dump_graph',
            'Evaluator',
            'ExponentialShift',
            'LinearShift',
            'LogReport',
            'observe_lr',
            'observe_value',
            'snapshot',
            'PlotReport',
            'PrintReport',
        ]
        super().__init__(
            required_keys, optional_keys, kwargs, self.__class__.__name__)
项目:DeepPoseComparison    作者:ynaka81    | 项目源码 | 文件源码
def start(self):
        """ Train pose net. """
        # set random seed.
        if self.seed is not None:
            random.seed(self.seed)
            np.random.seed(self.seed)
            if self.gpu >= 0:
                chainer.cuda.cupy.random.seed(self.seed)
        # initialize model to train.
        model = AlexNet(self.Nj, self.use_visibility)
        if self.resume_model:
            serializers.load_npz(self.resume_model, model)
        # prepare gpu.
        if self.gpu >= 0:
            chainer.cuda.get_device(self.gpu).use()
            model.to_gpu()
        # load the datasets.
        train = PoseDataset(self.train, data_augmentation=self.data_augmentation)
        val = PoseDataset(self.val, data_augmentation=False)
        # training/validation iterators.
        train_iter = chainer.iterators.MultiprocessIterator(
            train, self.batchsize)
        val_iter = chainer.iterators.MultiprocessIterator(
            val, self.batchsize, repeat=False, shuffle=False)
        # set up an optimizer.
        optimizer = self._get_optimizer()
        optimizer.setup(model)
        if self.resume_opt:
            chainer.serializers.load_npz(self.resume_opt, optimizer)
        # set up a trainer.
        updater = training.StandardUpdater(train_iter, optimizer, device=self.gpu)
        trainer = training.Trainer(
            updater, (self.epoch, 'epoch'), os.path.join(self.out, 'chainer'))
        # standard trainer settings
        trainer.extend(extensions.dump_graph('main/loss'))
        val_interval = (10, 'epoch')
        trainer.extend(TestModeEvaluator(val_iter, model, device=self.gpu), trigger=val_interval)
        # save parameters and optimization state per validation step
        resume_interval = (self.epoch/10, 'epoch')
        trainer.extend(extensions.snapshot_object(
            model, "epoch-{.updater.epoch}.model"), trigger=resume_interval)
        trainer.extend(extensions.snapshot_object(
            optimizer, "epoch-{.updater.epoch}.state"), trigger=resume_interval)
        trainer.extend(extensions.snapshot(
            filename="epoch-{.updater.epoch}.iter"), trigger=resume_interval)
        # show log
        log_interval = (10, "iteration")
        trainer.extend(extensions.LogReport(trigger=log_interval))
        trainer.extend(extensions.observe_lr(), trigger=log_interval)
        trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validation/main/loss', 'lr']), trigger=log_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        # start training
        if self.resume:
            chainer.serializers.load_npz(self.resume, trainer)
        trainer.run()