Python datasets 模块,imagenet3d() 实例源码

我们从Python开源项目中,提取了以下30个代码示例,用于说明如何使用datasets.imagenet3d()

项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_detections(self, all_boxes, output_dir):

        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))

    # write detection results into one file
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_detections_one_file(self, all_boxes, output_dir):

        # for each class
        for cls_ind, cls in enumerate(self.classes):
            if cls == '__background__':
                continue
            # open results file
            filename = os.path.join(output_dir, 'detections_{}.txt'.format(cls))
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each image
                for im_ind, index in enumerate(self.image_index):
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    # detection and viewpoint
                    for k in xrange(dets.shape[0]):
                        f.write('{:s} {:f} {:f} {:f} {:f} {:.32f} {:f} {:f} {:f}\n'.format(\
                                 index, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4], dets[k, 6], dets[k, 7], dets[k, 8]))
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def evaluate_proposals(self, all_boxes, output_dir):
        # for each image
        for im_ind, index in enumerate(self.image_index):
            filename = os.path.join(output_dir, index + '.txt')
            print 'Writing imagenet3d results to file ' + filename
            with open(filename, 'wt') as f:
                # for each class
                for cls_ind, cls in enumerate(self.classes):
                    if cls == '__background__':
                        continue
                    dets = all_boxes[cls_ind][im_ind]
                    if dets == []:
                        continue
                    for k in xrange(dets.shape[0]):
                        f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\
                                 dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4]))
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:Automatic_Group_Photography_Enhancement    作者:Yuliang-Zou    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:Faster-RCNN_TF    作者:smallcorgi    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:FastRcnnDetect    作者:karthkk    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:FRCNN_git    作者:runa91    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:FastRCNN-TF-Django    作者:DamonLiuNJU    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def __init__(self, image_set, imagenet3d_path=None):
        datasets.imdb.__init__(self, 'imagenet3d_' + image_set)
        self._image_set = image_set
        self._imagenet3d_path = self._get_default_path() if imagenet3d_path is None \
                            else imagenet3d_path
        self._data_path = os.path.join(self._imagenet3d_path, 'Images')
        self._classes = ('__background__', 'aeroplane', 'ashtray', 'backpack', 'basket', \
             'bed', 'bench', 'bicycle', 'blackboard', 'boat', 'bookshelf', 'bottle', 'bucket', \
             'bus', 'cabinet', 'calculator', 'camera', 'can', 'cap', 'car', 'cellphone', 'chair', \
             'clock', 'coffee_maker', 'comb', 'computer', 'cup', 'desk_lamp', 'diningtable', \
             'dishwasher', 'door', 'eraser', 'eyeglasses', 'fan', 'faucet', 'filing_cabinet', \
             'fire_extinguisher', 'fish_tank', 'flashlight', 'fork', 'guitar', 'hair_dryer', \
             'hammer', 'headphone', 'helmet', 'iron', 'jar', 'kettle', 'key', 'keyboard', 'knife', \
             'laptop', 'lighter', 'mailbox', 'microphone', 'microwave', 'motorbike', 'mouse', \
             'paintbrush', 'pan', 'pen', 'pencil', 'piano', 'pillow', 'plate', 'pot', 'printer', \
             'racket', 'refrigerator', 'remote_control', 'rifle', 'road_pole', 'satellite_dish', \
             'scissors', 'screwdriver', 'shoe', 'shovel', 'sign', 'skate', 'skateboard', 'slipper', \
             'sofa', 'speaker', 'spoon', 'stapler', 'stove', 'suitcase', 'teapot', 'telephone', \
             'toaster', 'toilet', 'toothbrush', 'train', 'trash_bin', 'trophy', 'tub', 'tvmonitor', \
             'vending_machine', 'washing_machine', 'watch', 'wheelchair')
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._image_ext = '.JPEG'
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        if cfg.IS_RPN:
            self._roidb_handler = self.gt_roidb
        else:
            self._roidb_handler = self.region_proposal_roidb

        self.config = {'top_k': 100000}

        # statistics for computing recall
        self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int)
        self._num_boxes_proposal = 0

        assert os.path.exists(self._imagenet3d_path), \
                'imagenet3d path does not exist: {}'.format(self._imagenet3d_path)
        assert os.path.exists(self._data_path), \
                'Path does not exist: {}'.format(self._data_path)
项目:SubCNN    作者:tanshen    | 项目源码 | 文件源码
def _get_default_path(self):
        """
        Return the default path where imagenet3d is expected to be installed.
        """
        return os.path.join(datasets.ROOT_DIR, 'data', 'ImageNet3D')