我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用fast_rcnn.config.cfg.NET_NAME。
def get_boxes_grid(image_height, image_width): """ Return the boxes on image grid. """ # height and width of the heatmap if cfg.NET_NAME == 'CaffeNet': height = np.floor((image_height * max(cfg.TRAIN.SCALES) - 1) / 4.0 + 1) height = np.floor((height - 1) / 2.0 + 1 + 0.5) height = np.floor((height - 1) / 2.0 + 1 + 0.5) width = np.floor((image_width * max(cfg.TRAIN.SCALES) - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) elif cfg.NET_NAME == 'VGGnet': height = np.floor(image_height * max(cfg.TRAIN.SCALES) / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) width = np.floor(image_width * max(cfg.TRAIN.SCALES) / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) else: assert (1), 'The network architecture is not supported in utils.get_boxes_grid!' # compute the grid box centers h = np.arange(height) w = np.arange(width) y, x = np.meshgrid(h, w, indexing='ij') centers = np.dstack((x, y)) centers = np.reshape(centers, (-1, 2)) num = centers.shape[0] # compute width and height of grid box area = cfg.TRAIN.KERNEL_SIZE * cfg.TRAIN.KERNEL_SIZE aspect = cfg.TRAIN.ASPECTS # height / width num_aspect = len(aspect) widths = np.zeros((1, num_aspect), dtype=np.float32) heights = np.zeros((1, num_aspect), dtype=np.float32) for i in xrange(num_aspect): widths[0,i] = math.sqrt(area / aspect[i]) heights[0,i] = widths[0,i] * aspect[i] # construct grid boxes centers = np.repeat(centers, num_aspect, axis=0) widths = np.tile(widths, num).transpose() heights = np.tile(heights, num).transpose() x1 = np.reshape(centers[:,0], (-1, 1)) - widths * 0.5 x2 = np.reshape(centers[:,0], (-1, 1)) + widths * 0.5 y1 = np.reshape(centers[:,1], (-1, 1)) - heights * 0.5 y2 = np.reshape(centers[:,1], (-1, 1)) + heights * 0.5 boxes_grid = np.hstack((x1, y1, x2, y2)) / cfg.TRAIN.SPATIAL_SCALE return boxes_grid, centers[:,0], centers[:,1]
def get_boxes_grid(image_height, image_width): """ Return the boxes on image grid. """ # height and width of the heatmap if cfg.NET_NAME == 'CaffeNet': height = np.floor((image_height * max(cfg.TRAIN.SCALES) - 1) / 4.0 + 1) height = np.floor((height - 1) / 2.0 + 1 + 0.5) height = np.floor((height - 1) / 2.0 + 1 + 0.5) width = np.floor((image_width * max(cfg.TRAIN.SCALES) - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) elif cfg.NET_NAME == 'VGG16': height = np.floor(image_height * max(cfg.TRAIN.SCALES) / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) height = np.floor(height / 2.0 + 0.5) width = np.floor(image_width * max(cfg.TRAIN.SCALES) / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) width = np.floor(width / 2.0 + 0.5) else: assert (1), 'The network architecture is not supported in utils.get_boxes_grid!' # compute the grid box centers h = np.arange(height) w = np.arange(width) y, x = np.meshgrid(h, w, indexing='ij') centers = np.dstack((x, y)) centers = np.reshape(centers, (-1, 2)) num = centers.shape[0] # compute width and height of grid box area = cfg.TRAIN.KERNEL_SIZE * cfg.TRAIN.KERNEL_SIZE aspect = cfg.TRAIN.ASPECTS # height / width num_aspect = len(aspect) widths = np.zeros((1, num_aspect), dtype=np.float32) heights = np.zeros((1, num_aspect), dtype=np.float32) for i in xrange(num_aspect): widths[0,i] = math.sqrt(area / aspect[i]) heights[0,i] = widths[0,i] * aspect[i] # construct grid boxes centers = np.repeat(centers, num_aspect, axis=0) widths = np.tile(widths, num).transpose() heights = np.tile(heights, num).transpose() x1 = np.reshape(centers[:,0], (-1, 1)) - widths * 0.5 x2 = np.reshape(centers[:,0], (-1, 1)) + widths * 0.5 y1 = np.reshape(centers[:,1], (-1, 1)) - heights * 0.5 y2 = np.reshape(centers[:,1], (-1, 1)) + heights * 0.5 boxes_grid = np.hstack((x1, y1, x2, y2)) / cfg.TRAIN.SPATIAL_SCALE return boxes_grid, centers[:,0], centers[:,1]