Python hyperopt 模块,space_eval() 实例源码
我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用hyperopt.space_eval()。
def start_optimization(self, max_evals):
logger.info("Started optimization for task %s", self.task)
space = self.space.hyperopt()
best = fmin(self.score, space, algo=tpe.suggest, max_evals=max_evals)
self.best = space_eval(space, best)
return self.best
def eval_hyperopt_space(space, vals):
"""
Evaluate a set of parameter values within the hyperopt space.
Optionally unpacks the values, if they are wrapped in lists.
:param space: dict
the hyperopt space dictionary
:param vals: dict
the values from a hyperopt trial
:return: evaluated space
"""
unpacked_vals = unpack_hyperopt_vals(vals)
return space_eval(space, unpacked_vals)
def run(self):
start = time.time()
trials = Trials()
best = fmin(self._obj, self.model_param_space._build_space(), tpe.suggest, self.max_evals, trials)
best_params = space_eval(self.model_param_space._build_space(), best)
best_params = self.model_param_space._convert_int_param(best_params)
trial_rmses = np.asarray(trials.losses(), dtype=float)
best_ind = np.argmin(trial_rmses)
best_rmse_mean = trial_rmses[best_ind]
best_rmse_std = trials.trial_attachments(trials.trials[best_ind])["std"]
self.logger.info("-"*50)
self.logger.info("Best RMSE")
self.logger.info(" Mean: %.6f"%best_rmse_mean)
self.logger.info(" std: %.6f"%best_rmse_std)
self.logger.info("Best param")
self.task._print_param_dict(best_params)
end = time.time()
_sec = end - start
_min = int(_sec/60.)
self.logger.info("Time")
if _min > 0:
self.logger.info(" %d mins"%_min)
else:
self.logger.info(" %d secs"%_sec)
self.logger.info("-"*50)
#------------------------ Main -------------------------
def xgb2(train2, y, test2, v, z):
cname = sys._getframe().f_code.co_name
N_splits = 9
N_seeds = 4
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval
dtrain = xgb.DMatrix(train2, y)
def step_xgb(params):
cv = xgb.cv(params=params,
dtrain=dtrain,
num_boost_round=10000,
early_stopping_rounds=100,
nfold=10,
seed=params['seed'])
score = cv.ix[len(cv)-1, 0]
print(cname, score, len(cv), params)
return dict(loss=score, status=STATUS_OK)
space_xgb = dict(
max_depth = hp.choice('max_depth', range(2, 8)),
subsample = hp.quniform('subsample', 0.6, 1, 0.05),
colsample_bytree = hp.quniform('colsample_bytree', 0.6, 1, 0.05),
learning_rate = hp.quniform('learning_rate', 0.005, 0.03, 0.005),
min_child_weight = hp.quniform('min_child_weight', 1, 6, 1),
gamma = hp.quniform('gamma', 0.5, 10, 0.05),
objective = 'binary:logistic',
eval_metric = 'logloss',
seed = 1,
silent = 1
)
trs = load_state(cname + '_trials')
if trs == None:
tr = Trials()
else:
tr, _ = trs
if len(tr.trials) > 0: print('reusing %d trials, best was:'%(len(tr.trials)), space_eval(space_xgb, tr.argmin))
for n in range(5):
best = fmin(step_xgb, space_xgb, algo=tpe.suggest, max_evals=len(tr.trials) + 1, trials = tr)
save_state(cname + '_trials', (tr, space_xgb))
xgb_params = space_eval(space_xgb, best)
print(xgb_params)
xgb_common(train2, y, test2, v, z, N_seeds, N_splits, cname, xgb_params)
def xgb2(train2, y, test2, v, z):
cname = sys._getframe().f_code.co_name
N_splits = 9
N_seeds = 4
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval
dtrain = xgb.DMatrix(train2, y)
def step_xgb(params):
cv = xgb.cv(params=params,
dtrain=dtrain,
num_boost_round=10000,
early_stopping_rounds=100,
nfold=10,
seed=params['seed'])
score = cv.ix[len(cv)-1, 0]
print(cname, score, len(cv), params)
return dict(loss=score, status=STATUS_OK)
space_xgb = dict(
max_depth = hp.choice('max_depth', range(2, 8)),
subsample = hp.quniform('subsample', 0.6, 1, 0.05),
colsample_bytree = hp.quniform('colsample_bytree', 0.6, 1, 0.05),
learning_rate = hp.quniform('learning_rate', 0.005, 0.03, 0.005),
min_child_weight = hp.quniform('min_child_weight', 1, 6, 1),
gamma = hp.quniform('gamma', 0.5, 10, 0.05),
objective = 'binary:logistic',
eval_metric = 'logloss',
seed = 1,
silent = 1
)
trs = load_state(cname + '_trials')
if trs == None:
tr = Trials()
else:
tr, _ = trs
if len(tr.trials) > 0: print('reusing %d trials, best was:'%(len(tr.trials)), space_eval(space_xgb, tr.argmin))
for n in range(15):
best = fmin(step_xgb, space_xgb, algo=tpe.suggest, max_evals=len(tr.trials) + 1, trials = tr)
save_state(cname + '_trials', (tr, space_xgb))
xgb_params = space_eval(space_xgb, best)
print(xgb_params)
xgb_common(train2, y, test2, v, z, N_seeds, N_splits, cname, xgb_params)
def xgb2(train2, y, test2, v, z):
cname = sys._getframe().f_code.co_name
N_splits = 9
N_seeds = 4
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval
dtrain = xgb.DMatrix(train2, y)
def step_xgb(params):
cv = xgb.cv(params=params,
dtrain=dtrain,
num_boost_round=10000,
early_stopping_rounds=100,
nfold=10,
seed=params['seed'])
score = cv.ix[len(cv)-1, 0]
print(cname, score, len(cv), params)
return dict(loss=score, status=STATUS_OK)
space_xgb = dict(
max_depth = hp.choice('max_depth', range(2, 8)),
subsample = hp.quniform('subsample', 0.6, 1, 0.05),
colsample_bytree = hp.quniform('colsample_bytree', 0.6, 1, 0.05),
learning_rate = hp.quniform('learning_rate', 0.005, 0.03, 0.005),
min_child_weight = hp.quniform('min_child_weight', 1, 6, 1),
gamma = hp.quniform('gamma', 0.5, 10, 0.05),
objective = 'binary:logistic',
eval_metric = 'logloss',
seed = 1,
silent = 1
)
trs = load_state(cname + '_trials')
if trs == None:
tr = Trials()
else:
tr, _ = trs
if len(tr.trials) > 0: print('reusing %d trials, best was:'%(len(tr.trials)), space_eval(space_xgb, tr.argmin))
for n in range(25):
best = fmin(step_xgb, space_xgb, algo=tpe.suggest, max_evals=len(tr.trials) + 1, trials = tr)
save_state(cname + '_trials', (tr, space_xgb))
xgb_params = space_eval(space_xgb, best)
print(xgb_params)
xgb_common(train2, y, test2, v, z, N_seeds, N_splits, cname, xgb_params)
def xgb3(train2, y, test2, v, z):
cname = sys._getframe().f_code.co_name
N_splits = 9
N_seeds = 4
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials, space_eval
dtrain = xgb.DMatrix(train2, y)
def step_xgb(params):
cv = xgb.cv(params=params,
dtrain=dtrain,
num_boost_round=10000,
early_stopping_rounds=100,
nfold=10,
seed=params['seed'])
score = cv.ix[len(cv)-1, 0]
print(cname, score, len(cv), params)
return dict(loss=score, status=STATUS_OK)
space_xgb = dict(
max_depth = hp.choice('max_depth', range(2, 8)),
subsample = hp.quniform('subsample', 0.6, 1, 0.05),
colsample_bytree = hp.quniform('colsample_bytree', 0.6, 1, 0.05),
learning_rate = hp.quniform('learning_rate', 0.005, 0.03, 0.005),
min_child_weight = hp.quniform('min_child_weight', 1, 6, 1),
gamma = hp.quniform('gamma', 0, 10, 0.05),
alpha = hp.quniform('alpha', 0.0, 1, 0.0001),
objective = 'binary:logistic',
eval_metric = 'logloss',
seed = 1,
silent = 1
)
trs = load_state(cname + '_trials')
if trs == None:
tr = Trials()
else:
tr, _ = trs
if len(tr.trials) > 0: print('reusing %d trials, best was:'%(len(tr.trials)), space_eval(space_xgb, tr.argmin))
for n in range(25):
best = fmin(step_xgb, space_xgb, algo=tpe.suggest, max_evals=len(tr.trials) + 1, trials = tr)
save_state(cname + '_trials', (tr, space_xgb))
xgb_params = space_eval(space_xgb, best)
print(xgb_params)
xgb_common(train2, y, test2, v, z, N_seeds, N_splits, cname, xgb_params)