Python keras.activations 模块,linear() 实例源码

我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用keras.activations.linear()

项目:keras-mnist-workshop    作者:drschilling    | 项目源码 | 文件源码
def keras_digits_vis(model, X_test, y_test):

    layer_idx = utils.find_layer_idx(model, 'preds')
    model.layers[layer_idx].activation = activations.linear
    model = utils.apply_modifications(model)

    for class_idx in np.arange(10):    
        indices = np.where(y_test[:, class_idx] == 1.)[0]
        idx = indices[0]

        f, ax = plt.subplots(1, 4)
        ax[0].imshow(X_test[idx][..., 0])

        for i, modifier in enumerate([None, 'guided', 'relu']):
            heatmap = visualize_saliency(model, layer_idx, filter_indices=class_idx, 
                                        seed_input=X_test[idx], backprop_modifier=modifier)
            if modifier is None:
                modifier = 'vanilla'
            ax[i+1].set_title(modifier)    
            ax[i+1].imshow(heatmap)
    plt.imshow(heatmap)
    plt.show()
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''
    xs = [1, 5, True, None, 'foo']
    for x in xs:
        assert(x == activations.linear(x))
项目:keras-surgeon    作者:BenWhetton    | 项目源码 | 文件源码
def find_activation_layer(layer, node_index):
    """

    Args:
        layer(Layer):
        node_index:
    """
    output_shape = layer.get_output_shape_at(node_index)
    maybe_layer = layer
    node = maybe_layer.inbound_nodes[node_index]
    # Loop will be broken by an error if an output layer is encountered
    while True:
        # If maybe_layer has a nonlinear activation function return it and its index
        activation = getattr(maybe_layer, 'activation', linear)
        if activation.__name__ != 'linear':
            if maybe_layer.get_output_shape_at(node_index) != output_shape:
                ValueError('The activation layer ({0}), does not have the same'
                           ' output shape as {1]'.format(maybe_layer.name,
                                                         layer.name))
            return maybe_layer, node_index

        # If not, move to the next layer in the datastream
        next_nodes = get_shallower_nodes(node)
        # test if node is a list of nodes with more than one item
        if len(next_nodes) > 1:
            ValueError('The model must not branch between the chosen layer'
                       ' and the activation layer.')
        node = next_nodes[0]
        node_index = get_node_index(node)
        maybe_layer = node.outbound_layer

        # Check if maybe_layer has weights, no activation layer has been found
        if maybe_layer.weights and (
                not maybe_layer.__class__.__name__.startswith('Global')):
            AttributeError('There is no nonlinear activation layer between {0}'
                           ' and {1}'.format(layer.name, maybe_layer.name))
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''
    xs = [1, 5, True, None, 'foo']
    for x in xs:
        assert(x == activations.linear(x))
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''
    xs = [1, 5, True, None, 'foo']
    for x in xs:
        assert(x == activations.linear(x))
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def prep_model_for_vis(model, out_layer_name='predictions'):
    layer_idx = find_layer_idx(model, out_layer_name)

    model.layers[layer_idx].activation = activations.linear
    model = apply_modifications(model)
    return model
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)