我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用keras.activations.sigmoid()。
def test_sigmoid(): ''' Test using a numerically stable reference sigmoid implementation ''' def ref_sigmoid(x): if x >= 0: return 1 / (1 + np.exp(-x)) else: z = np.exp(x) return z / (1 + z) sigmoid = np.vectorize(ref_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05)
def test_hard_sigmoid(): ''' Test using a reference hard sigmoid implementation ''' def ref_hard_sigmoid(x): ''' Reference hard sigmoid with slope and shift values from theano, see https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py ''' x = (x * 0.2) + 0.5 z = 0.0 if x <= 0 else (1.0 if x >= 1 else x) return z hard_sigmoid = np.vectorize(ref_hard_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.hard_sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = hard_sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05)
def __init__(self, units, n_slots=50, m_depth=20, shift_range=3, controller_model=None, read_heads=1, write_heads=1, activation='sigmoid', batch_size=777, stateful=False, **kwargs): self.output_dim = units self.units = units self.n_slots = n_slots self.m_depth = m_depth self.shift_range = shift_range self.controller = controller_model self.activation = get_activations(activation) self.read_heads = read_heads self.write_heads = write_heads self.batch_size = batch_size # self.return_sequence = True try: if controller.state.stateful: self.controller_with_state = True except: self.controller_with_state = False self.controller_read_head_emitting_dim = _controller_read_head_emitting_dim(m_depth, shift_range) self.controller_write_head_emitting_dim = _controller_write_head_emitting_dim(m_depth, shift_range) super(NeuralTuringMachine, self).__init__(**kwargs)
def call(self, x): y = K.dot(x, self.W_carry) if self.bias: y += self.b_carry transform_weight = activations.sigmoid(y) y = K.dot(x, self.W) if self.bias: y += self.b act = self.activation(y) act *= transform_weight output = act + (1 - transform_weight) * x return output
def step(self, x, states): ytm, stm = states # repeat the hidden state to the length of the sequence _stm = K.repeat(stm, self.timesteps) # now multiplty the weight matrix with the repeated hidden state _Wxstm = K.dot(_stm, self.W_a) # calculate the attention probabilities # this relates how much other timesteps contributed to this one. et = K.dot(activations.tanh(_Wxstm + self._uxpb), K.expand_dims(self.V_a)) at = K.exp(et) at_sum = K.sum(at, axis=1) at_sum_repeated = K.repeat(at_sum, self.timesteps) at /= at_sum_repeated # vector of size (batchsize, timesteps, 1) # calculate the context vector context = K.squeeze(K.batch_dot(at, self.x_seq, axes=1), axis=1) # ~~~> calculate new hidden state # first calculate the "r" gate: rt = activations.sigmoid( K.dot(ytm, self.W_r) + K.dot(stm, self.U_r) + K.dot(context, self.C_r) + self.b_r) # now calculate the "z" gate zt = activations.sigmoid( K.dot(ytm, self.W_z) + K.dot(stm, self.U_z) + K.dot(context, self.C_z) + self.b_z) # calculate the proposal hidden state: s_tp = activations.tanh( K.dot(ytm, self.W_p) + K.dot((rt * stm), self.U_p) + K.dot(context, self.C_p) + self.b_p) # new hidden state: st = (1-zt)*stm + zt * s_tp yt = activations.softmax( K.dot(ytm, self.W_o) + K.dot(stm, self.U_o) + K.dot(context, self.C_o) + self.b_o) if self.return_probabilities: return at, [yt, st] else: return yt, [yt, st]
def _split_and_apply_activations(self, controller_output): """ This takes the controller output, splits it in ntm_output, read and wright adressing data. It returns a triple of ntm_output, controller_instructions_read, controller_instructions_write. ntm_output is a tensor, controller_instructions_read and controller_instructions_write are lists containing the adressing instruction (k, beta, g, shift, gamma) and in case of write also the writing constructions, consisting of an erase and an add vector. As it is necesseary for stable results, k and add_vector is activated via tanh, erase_vector via sigmoid (this is critical!), shift via softmax, gamma is sigmoided, inversed and clipped (probably not ideal) g is sigmoided, beta is linear (probably not ideal!) """ # splitting ntm_output, controller_instructions_read, controller_instructions_write = tf.split( controller_output, np.asarray([self.output_dim, self.read_heads * self.controller_read_head_emitting_dim, self.write_heads * self.controller_write_head_emitting_dim]), axis=1) controller_instructions_read = tf.split(controller_instructions_read, self.read_heads, axis=1) controller_instructions_write = tf.split(controller_instructions_write, self.write_heads, axis=1) controller_instructions_read = [ tf.split(single_head_data, np.asarray([self.m_depth, 1, 1, 3, 1]), axis=1) for single_head_data in controller_instructions_read] controller_instructions_write = [ tf.split(single_head_data, np.asarray([self.m_depth, 1, 1, 3, 1, self.m_depth, self.m_depth]), axis=1) for single_head_data in controller_instructions_write] #activation ntm_output = self.activation(ntm_output) controller_instructions_read = [(tanh(k), hard_sigmoid(beta)+0.5, sigmoid(g), softmax(shift), 1 + 9*sigmoid(gamma)) for (k, beta, g, shift, gamma) in controller_instructions_read] controller_instructions_write = [ (tanh(k), hard_sigmoid(beta)+0.5, sigmoid(g), softmax(shift), 1 + 9*sigmoid(gamma), hard_sigmoid(erase_vector), tanh(add_vector)) for (k, beta, g, shift, gamma, erase_vector, add_vector) in controller_instructions_write] return (ntm_output, controller_instructions_read, controller_instructions_write)
def LSTMCNN(opt): # opt.seq_length = number of time steps (words) in each batch # opt.rnn_size = dimensionality of hidden layers # opt.num_layers = number of layers # opt.dropout = dropout probability # opt.word_vocab_size = num words in the vocab # opt.word_vec_size = dimensionality of word embeddings # opt.char_vocab_size = num chars in the character vocab # opt.char_vec_size = dimensionality of char embeddings # opt.feature_maps = table of feature map sizes for each kernel width # opt.kernels = table of kernel widths # opt.length = max length of a word # opt.use_words = 1 if use word embeddings, otherwise not # opt.use_chars = 1 if use char embeddings, otherwise not # opt.highway_layers = number of highway layers to use, if any # opt.batch_size = number of sequences in each batch if opt.use_words: word = Input(batch_shape=(opt.batch_size, opt.seq_length), dtype='int32', name='word') word_vecs = Embedding(opt.word_vocab_size, opt.word_vec_size, input_length=opt.seq_length)(word) if opt.use_chars: chars = Input(batch_shape=(opt.batch_size, opt.seq_length, opt.max_word_l), dtype='int32', name='chars') chars_embedding = TimeDistributed(Embedding(opt.char_vocab_size, opt.char_vec_size, name='chars_embedding'))(chars) cnn = CNN(opt.seq_length, opt.max_word_l, opt.char_vec_size, opt.feature_maps, opt.kernels, chars_embedding) if opt.use_words: x = Concatenate()([cnn, word_vecs]) inputs = [chars, word] else: x = cnn inputs = chars else: x = word_vecs inputs = word if opt.batch_norm: x = BatchNormalization()(x) for l in range(opt.highway_layers): x = TimeDistributed(Highway(activation='relu'))(x) for l in range(opt.num_layers): x = LSTM(opt.rnn_size, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, stateful=True)(x) if opt.dropout > 0: x = Dropout(opt.dropout)(x) output = TimeDistributed(Dense(opt.word_vocab_size, activation='softmax'))(x) model = sModel(inputs=inputs, outputs=output) model.summary() optimizer = sSGD(lr=opt.learning_rate, clipnorm=opt.max_grad_norm, scale=float(opt.seq_length)) model.compile(loss='sparse_categorical_crossentropy', optimizer=optimizer) return model