Python keras.applications.imagenet_utils 模块,decode_predictions() 实例源码

我们从Python开源项目中,提取了以下6个代码示例,用于说明如何使用keras.applications.imagenet_utils.decode_predictions()

项目:keras-squeezenet    作者:rcmalli    | 项目源码 | 文件源码
def testTHPrediction(self):
        keras.backend.set_image_dim_ordering('th')
        model = SqueezeNet()
        img = image.load_img('images/cat.jpeg', target_size=(227, 227))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        preds = model.predict(x)
        decoded_preds = decode_predictions(preds)
        #print('Predicted:', decoded_preds)
        self.assertIn(decoded_preds[0][0][1], 'tabby')
        #self.assertAlmostEqual(decode_predictions(preds)[0][0][2], 0.82134342)
项目:spark-deep-learning    作者:databricks    | 项目源码 | 文件源码
def _decodeOutputAsPredictions(self, df):
        # If we start having different weights than imagenet, we'll need to
        # move this logic to individual model building in NamedImageTransformer.
        # Also, we could put the computation directly in the main computation
        # graph or use a scala UDF for potentially better performance.
        topK = self.getOrDefault(self.topK)

        def decode(predictions):
            pred_arr = np.expand_dims(np.array(predictions), axis=0)
            decoded = decode_predictions(pred_arr, top=topK)[0]
            # convert numpy dtypes to python native types
            return [(t[0], t[1], t[2].item()) for t in decoded]
        decodedSchema = ArrayType(
            StructType([StructField("class", StringType(), False),
                        StructField("description", StringType(), False),
                        StructField("probability", FloatType(), False)]))
        decodeUDF = udf(decode, decodedSchema)
        interim_output = self._getIntermediateOutputCol()
        return (
            df.withColumn(self.getOutputCol(), decodeUDF(df[interim_output]))
              .drop(interim_output)
        )
项目:picasso    作者:merantix    | 项目源码 | 文件源码
def decode_prob(self, class_probabilities):
        r = imagenet_utils.decode_predictions(class_probabilities,
                                              top=self.top_probs)
        results = [
            [{'code': entry[0],
              'name': entry[1],
              'prob': '{:.3f}'.format(entry[2])}
             for entry in row]
            for row in r
        ]
        classes = imagenet_utils.CLASS_INDEX
        class_keys = list(classes.keys())
        class_values = list(classes.values())

        for result in results:
            for entry in result:
                entry['index'] = int(
                    class_keys[class_values.index([entry['code'],
                                                   entry['name']])])
        return results
项目:keras-squeezenet    作者:rcmalli    | 项目源码 | 文件源码
def testTFwPrediction(self):
        keras.backend.set_image_dim_ordering('tf')
        model = SqueezeNet()
        img = image.load_img('images/cat.jpeg', target_size=(227, 227))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        preds = model.predict(x)
        decoded_preds = decode_predictions(preds)
        #print('Predicted:', decoded_preds)
        self.assertIn(decoded_preds[0][0][1], 'tabby')
        #self.assertAlmostEqual(decode_predictions(preds)[0][0][2], 0.82134342)
项目:unblackboxing_webinar    作者:deepsense-ai    | 项目源码 | 文件源码
def plot(self, vis_func, img_path, label_list, figsize):
        img = utils.load_img(img_path, target_size=self.img_shape_)
        img = img[:,:,:3]

        predictions = self.model_.predict(img2tensor(img, self.img_shape_))
        predictions = softmax(predictions)

        if not label_list:
            prediction_text = decode_predictions(predictions)[0]
            def _plot(label_id):
                label_id = int(label_id)
                text_label = get_pred_text_label(label_id)
                label_proba = np.round(predictions[0,label_id], 4)
                heatmap = vis_func(img, label_id)
                for p in prediction_text:
                    print(p[1:]) 

                plt.figure(figsize=figsize)
                plt.subplot(1,2,1)
                plt.title('label:%s\nscore:%s'%(text_label,label_proba))
                plt.imshow(overlay(heatmap, img))
                plt.subplot(1,2,2)
                plt.imshow(img)
                plt.show()
        else:
            def _plot(label_id):
                print(pd.DataFrame(predictions, columns=label_list))
                label_id = int(label_id)
                text_label = label_list[label_id]
                label_proba = np.round(predictions[0,label_id], 4)
                heatmap = vis_func(img,label_id)

                plt.figure(figsize=figsize)
                plt.subplot(1,2,1)
                plt.title('label:%s\nscore:%s'%(text_label,label_proba))
                plt.imshow(overlay(heatmap, img))
                plt.subplot(1,2,2)
                plt.imshow(img)
                plt.show()       

        return interact(_plot, label_id='1')
项目:Papers2Code    作者:rainer85ah    | 项目源码 | 文件源码
def show_predictions(model, img):
        preds = model.predict(img)
        print('{}'.format(model.metrics_names[1]), 'Prediction: ', decode_predictions(preds))
        return